Заседание 384 (10 ноября 2017 г.)
Георгиевский Д. В.
Устойчивость нестационарного сдвига среды Бингама в плоском слое.
Рассматривается плоскопараллельное нестационарное сдвиговое течение двухконстантной вязкопластической среды Бингама в бесконечном по простиранию слое. Полагается, что продольная скорость течения как функция одной пространственной координаты и времени известна из решения классической одномерной нестационарной задачи. Учитывается изменение со временем толщин возможных жёстких зон, границы которых параллельны границам слоя. На основное течение налагается картина двумерных в плоскости слоя возмущений. Задача в терминах возмущений сводится к одному линеаризованному уравнению относительно амплитуды функции тока с соответствующим набором четырёх граничных условий, при этом исследуются несколько вариантов таких четвёрок.
С помощью метода интегральных соотношений задача сводится к проблеме минимизации отношений квадратичных функционалов, зависящих от времени, в пространстве H2(a;b), где a и b - функции времени, определяемые движением жёстких зон в основном течении. Для различных вариантов задания граничных условий доказываются обобщённые неравенства Фридрихса и выводятся достаточные интегральные оценки устойчивости, в которых участвуют числа Рейнольдса, Сен-Венана, а также максимальная по толщине скорость сдвига в основном движении. Обсуждается зависимость полученных оценок от вязких и пластических свойств среды.