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It is well-known that the theory of classical equation of Hamilton�Jacobi has being connected
with the theory of Lagrange and Kolmogorov tori. The solutions of such equations are the
representations of fundemental groups of such manifolds. After that the theory of tori �in
general� is shown. It is known that for the entire symplectic manifold there exists a symplectic
connection such that its covariant derivative with respect to connection is equal to zero.

It is shown that Lagrange tori have a lots of �non-linear� properties with respect to classical
equation of Hamilton�Jacobi but Kolmogorov tori have not such variety with respect to that
equation.

The examples from dynamics of a rigid body interacting with the resisting medium are
presented. Furthermore, a lots of examples from the di�erent areas of natural sciences are
illustrated.
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1 Introduction

Earlier (see [1, 2]), the author already proved the complete integrability of the equations of
a plane-parallel motion of a �xed rigid body�pendulum in a homogeneous �ow of a medium
under the jet �ow conditions when the system of dynamical equations possesses a �rst integral,
which is a transcendental (in the sense of the theory of functions of a complex variable, i.e., it
has essential singularities) function of quasi-velocities. It was assumed that the interaction of
the medium with the body is concentrated on a part of the surface of the body that has the
form of a (one-dimensional) plate.

In [2, 3], the planar problem was generalized to the spatial (three-dimensional) case, where
the system of dynamical equations has a complete set of transcendental �rst integrals. It was
assumed that the interaction of the homogeneous medium �ow with the �xed body (the spherical
pendulum) is concentrated on a part of the body surface that has the form of a planar (two-
dimensional) disk.

Later on (see [3, 4]), the equations of motion of the �xed dynamically symmetric four-
dimensional rigid bodies, where the force �eld is concentrated on a part of the body surface
that has the form of a (three-dimensional) disk, in this case, the force �eld is concentrated on
the one-dimensional straight line perpendicular to this disk.

In this activity, the results relate to the case where all interaction of the homogeneous �ow of
a medium with the �xed body is concentrated on that part of the surface of the body, which has
the form of a (n−1)-dimensional disk, and the action of the force is concentrated in a direction
perpendicular to this disk. These results are systematized and are presented in invariant form.
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2 Model assumptions

Let consider the homogeneous (n − 1)-dimensional disk Dn−1 (with the center in the
point D), the hyperplane of which perpendicular to the holder OD in the multi-dimensional
Euclidean space En. The disk is rigidly �xed perpendicular to the tool holder OD located on
the (generalized) spherical hinge O, and it �ows about homogeneous �uid �ow. In this case,
the body is a physical (generalized spherical) pendulum. The medium �ow moves from in�nity
with constant velocity v = v∞ ̸= 0. Assume that the holder does not create a resistance.

We suppose that the total force S of medium �ow interaction perpendicular to the disk Dn−1,
and point N of application of this force is determined by at least the angle of attack α, which
is made by the velocity vector vD of the point D with respect to the �ow and the holder OD;
the total force is also determined by the angles β1, . . . , βn−2, which are made in the hyperplane
of the disk Dn−1 (thus, (v, α, β1, . . . , βn−2) are the (generalized) spherical coordinates of the tip
of the vector vD), and also the reduced angular velocity tensor

ω̃ ∼=
lΩ̃

vD
, vD = |vD|

(l is the length of the holder, Ω̃ is the angular velocity tensor of the pendulum). Such conditions
generalize the model of streamline �ow around spatial bodies [4, 5].

The vector

e =
OD

l
(1)

determines the orientation of the holder. Then

S = s(α)v2De, (2)

where
s(α) = s1(α)sign cosα, (3)

and the resistance coe�cient s1 ≥ 0 depends only on the angle of attack α. By the axe-
symmetry properties of the body�pendulum with respect to the axis Dx1 = OD, the function
s(α) is (formally) even.

Let Dx1 . . . xn be the coordinate system rigidly attached to the body, herewith, the axis
Dx1 has a direction vector e, and the axes Dx2, . . . , Dxn−1 and Dxn lie in the hyperplane of
the disk Dn−1.

By the angles (ξ, η1, . . . , ηn−2), we de�ne the position of the holder OD in the multi-
dimensional space En. In this case, the angle ξ is made by the holder and the direction of
the over-running medium �ow. In other words, the angles introduced are the (generalized)
spherical coordinates of the point D of the center of a disk Dn−1 on the (n − 1)-dimensional
sphere of the constant radius OD.

The space of positions of this (generalized) spherical (physical) pendulum is the (n − 1)-
dimensional sphere

Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}, (4)

and its phase space is the tangent bundle of the (n− 1)-dimensional sphere

T∗S
n−1{(ξ̇, η̇1, . . . , η̇n−2; ξ, η1, . . . , ηn−2) ∈ R2(n−1) : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}. (5)

The tensor (of the second-rank) Ω̃ of the angular velocity in the coordinate system
Dx1 . . . xn, we de�ne through the skew-symmetric matrix. And so, to be speci�c, in the case
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n = 5 that matrix has the form

Ω̃ =


0 −ω10 ω9 −ω7 ω4

ω10 0 −ω8 ω6 −ω3

−ω9 ω8 0 −ω5 ω2

ω7 −ω6 ω5 0 −ω1

−ω4 ω3 −ω2 ω1 0

 , Ω̃ ∈ so(5). (6)

The distance from the center D of the disk Dn−1 to the center of pressure (the point N)
has the form

|rN | = rN = DN

(
α, β1, . . . , βn−2,

lΩ

vD

)
, (7)

where
rN = {0, x2N , . . . , xnN}

in system Dx1 . . . xn (we omit the wave over Ω).
We note, likely in lower-dimensional cases, that the model used to describe the e�ects

of �uid �ow on �xed pendulum is similar to the model constructed for free body and, in
further, takes into account of the rotational derivative of the moment of the forces of medium
in�uence with respect to the pendulum angular velocity tensor. An analysis of the problem
of the (generalized) spherical (physical) pendulum in a �ow will allow to �nd the qualitative
analogies in the dynamics of partially �xed bodies and free multi-dimensional ones.

3 Some general discourses

3.1 Cases of dynamical symmetries of multi-dimensional rigid body

Let a n-dimensional rigid body Θ of mass m with smooth (n−1)-dimensional boundary ∂Θ
be under the in�uence of a nonconservative force �eld; this can be interpreted as a motion of
the body in a resisting medium that �lls up the multi-dimensional domain of Euclidean space
En.

We assume that the body is dynamically symmetric. In this case, for instance, for the four-
dimensional body, there are two logical possibilities of the representation of its inertia tensor
in the case of existence of two independent equations on the principal moments of inertia; i.e.,
either in some coordinate system Dx1x2x3x4 attached to the body, the operator of inertia has
the form

diag{I1, I2, I2, I2} (8)

(the so called case (1�3)), or the form

diag{I1, I1, I3, I3} (9)

(the case (2�2)). In the �rst case, the body is dynamically symmetric in the hyperplaneDx2x3x4

(in other words, Dx1 is the axis of dynamical symmetry) and, in the second case, the two-
dimensional planes Dx1x2 and Dx3x4 are the planes of dynamical symmetry of the body.

For the �ve-dimensional body, it could be logically to study the cases of existence of three
independent equations on the principal moments of inertia; i.e., either in some coordinate system
Dx1x2x3x4x5 attached to the body, the operator of inertia has the form

diag{I1, I2, I2, I2, I2} (10)
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(the case (1�4)), or the form
diag{I1, I1, I3, I3, I3} (11)

(the case (2�3)). In the �rst case, the body is dynamically symmetric in the hyperplane
Dx2x3x4x5 (in other words, Dx1 is the axis of dynamical symmetry) and, in the second case, the
two-dimensional plane Dx1x2 and three-dimensional plane Dx3x4 are the planes of dynamical
symmetry of the body.

Respectively, for the n-dimensional body, it could also be logically to study the cases of
existence of n−1 independent equations on the principal moments of inertia. In this case, [n/2]
variants of the forms (8), (9) (or (10), (11)) are possible (here, [...] is the integral part). For
instance, for the �ve-dimensional body, three cases (1�5), (2�4), and (3�3) are possible.

For the case of n-dimensional rigid body, primarily, we shall be interested of the case (1�
(n − 1)), i.e., when, in the certain coordinate system Dx1 . . . xn attached to the body, the
operator of inertia has the form

diag{I1, I2, . . . , I2︸ ︷︷ ︸
n−1

}, (12)

precisely, in the hyperplane Dx2 . . . xn, a body is dynamically symmetric (in other words, Dx1

is the axis of dynamical symmetry).

3.2 Dynamics on so(n) and Rn

The con�guration space of a free, n-dimensional rigid body is the direct product

Rn × SO(n) (13)

of the space Rn, which de�nes the coordinates of the center of mass of the body, and the
rotation group SO(n), which de�nes the rotations of the body about its center of mass and has
dimension

n+
n(n− 1)

2
=

n(n+ 1)

2
.

Respectively, the dimension of the phase space is equal to

n(n+ 1).

In particular, if Ω is the tensor of angular velocity of a n-dimensional rigid body (it
is a second-rank tensor), Ω ∈ so(n), then the part of the dynamical equations of motion
corresponding to the Lie algebra so(n) has the following form:

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (14)

where
Λ = diag{λ1, . . . , λn}, (15)

λ1 =
−I1 + I2 + . . .+ In

2
, λ2 =

I1 − I2 + I3 + . . .+ In
2

, . . . ,

λn−1 =
I1 + . . .+ In−2 − In−1 + In

2
, λn =

I1 + . . .+ In−1 − In
2

,

M = MF is the natural projection of the moment of external forces F acting on the body in
Rn on the natural coordinates of the Lie algebra so(n) and [., .] is the commutator in so(n).
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The skew-symmetric matrix corresponding to this second-rank tensor Ω ∈ so(5) we represent
in the form 

0 −ω10 ω9 −ω7 ω4

ω10 0 −ω8 ω6 −ω3

−ω9 ω8 0 −ω5 ω2

ω7 −ω6 ω5 0 −ω1

−ω4 ω3 −ω2 ω1 0

 , (16)

(see also [5, 6]), where ω1, ω2, . . . , ω10 are the components of the tensor of angular velocity
corresponding to the projections on the coordinates of the Lie algebra so(5).

In this case, obviously, the following relations hold:

λi − λj = Ij − Ii (17)

for any i, j = 1, . . . , n.
For the calculation of the moment of an external force acting on the body, we need to

construct the mapping
Rn ×Rn −→ so(n), (18)

than maps a pair of vectors
(DN,F) ∈ Rn ×Rn (19)

from Rn ×Rn to an element of the Lie algebra so(n), where

DN = {δ1, δ2, . . . , δn}, F = {F1, F2, . . . , Fn}, (20)

and F is an external force acting on the body (here, DN is the vector passing through the
origin D of the coordinate system Dx1 . . . xn to the point N of application of the force). For
this end, we construct the following auxiliary matrix(

δ1 δ2 . . . δn
F1 F2 . . . Fn

)
. (21)

All kinds of second-order minors with the sign (and they are exactly n(n − 1)/2 pieces
n(n− 1)/2) of this auxiliary matrix are the coordinates of the moment (DN,F) of the force F,
and this moment currently identi�ed with an element of the Lie algebra so(n).

Since the ordering the coordinates ω1, ω2, . . . , ωf , f = 1, . . . , n(n − 1)/2, has been
introduced on the Lie algebra so(n), then we also introduce the same ordering for the calculating
of the moment MF = (DN,F) of the force F. Indeed, the �rst set G1 of coordinates of the
desired moment consists of n− 1 alternating minors

+

∣∣∣∣ δn−1 δn
Fn−1 Fn

∣∣∣∣ , −
∣∣∣∣ δn−2 δn
Fn−2 Fn

∣∣∣∣ , +

∣∣∣∣ δn−3 δn
Fn−3 Fn

∣∣∣∣ , . . . , (−1)n
∣∣∣∣ δ1 δn
F1 Fn

∣∣∣∣ .
The second set G2 of coordinates consists of n− 2 alternating minors

+

∣∣∣∣ δn−2 δn−1

Fn−2 Fn−1

∣∣∣∣ , −
∣∣∣∣ δn−3 δn−1

Fn−3 Fn−1

∣∣∣∣ , +

∣∣∣∣ δn−4 δn−1

Fn−4 Fn−1

∣∣∣∣ , . . . , (−1)n+1

∣∣∣∣ δ1 δn−1

F1 Fn−1

∣∣∣∣ .
Continuing, the �nal set Gn−1 of coordinates consists of one minor

+

∣∣∣∣ δ1 δ2
F1 F2

∣∣∣∣ .
As seen, the �rst minors in any set begin from the sign �+�.
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The resulting ordered set from n(n−1)/2 values, we call the coordinates of moment (DN,F)
of the force F.

Dynamical systems studied in the following sections, generally speaking, are not
conservative; they are dynamical systems with variable dissipation with zero mean (see [7, 8]).
We need to examine by direct methods a part of the main system of dynamical equations,
namely, the Newton equation, which plays the role of the equation of motion of the center of
mass, i.e., the part of the dynamical equations corresponding to the space Rn:

mwC = F, (22)

where wC is the acceleration of the center of mass C of the body and m is its mass. Moreover,
due to the higher-dimensional Rivals formula (in this case, it can be obtained by the operator
method not di�cultly) we have the following relations:

wC = wD + Ω2DC+ EDC, wD = v̇D + ΩvD, E = Ω̇, (23)

where wD is the acceleration of the point D, F is the external force acting on the body, and E
is the tensor of angular acceleration (second-rank tensor).

If the position of a body Θ in the Euclidean space En is determined by the functions which
are the cyclic in the following sense, i.e., the generalized force F and its moment MF = (DN,F)
depend on the generalized velocities only (quasi-velocities) and do not depend on the position
of a body in the space, then the system of equations (14) and (22) on the manifold Rn × so(n)
is a closed system of dynamical equations of the motion of a free multi-dimensional rigid body
under the action of an external force F. This system has been separated from the kinematic
part of the equations of motion on the manifold (13) and can be examined independently.

In particular, the right-hand side of the system (14) for n = 5 has the form

M = {M1,M2, . . . ,M10} =

= {δ4F5 − δ5F4, δ5F3 − δ3F5, δ2F5 − δ5F2, δ5F1 − δ1F5, δ3F4 − δ4F3,

δ4F2 − δ2F4, δ1F4 − δ4F1, δ2F3 − δ3F2, δ3F1 − δ1F3, δ1F2 − δ2F1},
(24)

where M1, M2, . . . , M10 are the components of the tensor of moment of the external forces in
the projections on the coordinates in the Lie algebra so(5),

M =


0 −M10 M9 −M7 M4

M10 0 −M8 M6 −M3

−M9 M8 0 −M5 M2

M7 −M6 M5 0 −M1

−M4 M3 −M2 M1 0

 . (25)
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4 Set of dynamical equations in Lie algebra so(n)

In our case of a �xed pendulum, the case (12) is realized. Then the dynamical part of the
equations of the motion corresponding to the Lie algebra so(n), has the following form:

(I1 + (n− 3)I2)ω̇1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(I1 + (n− 3)I2)ω̇r1−1 = 0,

(n− 2)I2ω̇r1 + (−1)n+1(I1 − I2)Wn−1(Ω) = (−1)nxnN

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

(I1 + (n− 3)I2)ω̇r1+1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(I1 + (n− 3)I2)ω̇r2−1 = 0,

(n− 2)I2ω̇r2 + (−1)n(I1 − I2)Wn−2(Ω) = (−1)n−1xn−1,N

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

(I1 + (n− 3)I2)ω̇r2+1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

(I1 + (n− 3)I2)ω̇rn−2−1 = 0,

(n− 2)I2ω̇rn−2 + (I1 − I2)W2(Ω) = −x3N

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

(n− 2)I2ω̇rn−1 + (I2 − I1)W1(Ω) = x2N

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

(26)

where rn−2 + 1 = rn−1, and the functions Wt(Ω), t = 1, . . . , n − 1, are the quadratic forms on
the components ω1, . . . , ωf , f = n(n− 1)/2, of tensor Ω, herewith,

Wt(Ω)|ωk1
=...=ωks=0 = 0, s = (n− 1)(n− 2)/2, kj ̸= ri, j = 1, . . . , s, i = 1, . . . , n− 1. (27)

Let us explain the formula (27). The tensor Ω ∈ so(n) has

f = n(n− 1)/2

components totally. Respectively, the moment of the forces MF = (DN,F) has as many
components. Since the auxiliary matrix (21) has the following form(

0 x2N . . . xnN

−s(α)v2D 0 . . . 0

)
, (28)

in the right-hand side of the system (26)

s = (n− 1)(n− 2)/2

equations contain the identical zero. We denote the numbers of those equations as follows:

k1, . . . , ks.

In this case, the corresponding components ωkj , j = 1, . . . , s, of the tensor Ω of the angular
velocity, we call the cyclic.
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The rest of the numbers of equations in which the following values with the sign

xlN

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2, l = 2, . . . , n,

present, we denote through
r1, . . . , rn−1,

since

f − s =
n(n− 1)

2
− (n− 1)(n− 2)

2
= n− 1.

Obviously that
Wt(0) ≡ 0

for any t = 1, . . . , n− 1, i.e., the quadratic forms Wt(Ω) are equal to zero identically, when all
the components of the tensor Ω are equal to zero. In this case, the formula (27) means that for
the vanishing of quadratic forms Wt(Ω), t = 1, . . . , n − 1, to zero, it is su�cient that all the
cyclic components of the tensor Ω could be zero.

In particular, in the case n = 5 this system has the from:

(I1 + 2I2)ω̇1 = 0,

(I1 + 2I2)ω̇2 = 0,

(I1 + 2I2)ω̇3 = 0,

3I2ω̇4 + (I1 − I2)(ω3ω10 + ω2ω9 + ω1ω7) = −x5N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

(I1 + 2I2)ω̇5 = 0,

(I1 + 2I2)ω̇6 = 0,

3I2ω̇7 + (I2 − I1)(ω1ω4 − ω6ω10 − ω5ω9) = x4N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

(I1 + 2I2)ω̇8 = 0,

3I2ω̇9 + (I1 − I2)(ω8ω10 − ω5ω7 − ω2ω4) = −x3N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

3I2ω̇10 + (I2 − I1)(ω8ω9 + ω6ω7 + ω3ω4) = x2N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

(29)

since the moment of the medium interaction force for n = 5 is determined through the following
auxiliary matrix: (

0 x2N x3N x4N x5N

−s(α)v2D 0 0 0 0

)
, (30)

where
{−s(α)v2D, 0, 0, 0, 0}

is the decomposition of the force S of the medium interaction in the coordinate system
Dx1x2x3x4x5. In this case,

r1 = 4, r2 = 7, r3 = 9, r4 = 10.

Since the dimension of the Lie algebra so(n) is equal to f = n(n − 1)/2, the system of
equations (26) represents the set of the dynamical equations on so(n).

We see, that in the right-hand side of Eq. (26), �rst of all, it includes the angles
α, β1, . . . , βn−2, therefore, this system of equations is not closed. In order to obtain a complete
system of equations of motion of the pendulum, it is necessary to attach several sets of kinematic
equations to the dynamic equations on the Lie algebra so(n).
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4.1 Cyclic �rst integrals

We immediately note that the system (26) obtained from (14), by the existing dynamic
symmetry

I2 = . . . = In, (31)

possesses s = (n− 1)(n− 2)/2 cyclic �rst integrals

ωk1 ≡ ω0
k1

= const, . . . , ωks ≡ ω0
ks = const, s =

(n− 1)(n− 2)

2
. (32)

In this case, further, we consider the dynamics of our system at zero levels:

ω0
k1

= . . . = ω0
ks = 0. (33)

In particular, the system (29) possesses the �rst integrals

ω1 ≡ ω0
1, ω2 ≡ ω0

2, ω3 ≡ ω0
3, ω5 ≡ ω0

5, ω6 ≡ ω0
6, ω8 ≡ ω0

8, (34)

which are considered at zero levels:

ω0
1 = ω0

2 = ω0
3 = ω0

5 = ω0
6 = ω0

8 = 0. (35)

The nonzero components ωr1 , . . . , ωrp of the tensor Ω, it has p = f − s = n− 1 pieces (here
r1, . . . , rp the rest p of numbers from the set Q1 = {1, 2, . . . , n(n − 1)/2}, which are not equal
to k1, . . . , ks).

Under conditions (31)�(33) the system (26) has the form of unclosed system of n − 1
equations:

(n− 2)I2ω̇r1 = (−1)nxnN

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(n− 2)I2ω̇r2 = (−1)n−1xn−1,N

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(n− 2)I2ω̇rn−2 = −x3N

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2,

(n− 2)I2ω̇rn−1 = x2N

(
α, β1, . . . , βn−2,

Ω

v

)
s(α)v2.

(36)

In particular, under conditions (34)�(35) the system (29) has the form of unclosed system
of four equations:

3I2ω̇4 = −x5N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

3I2ω̇7 = x4N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

3I2ω̇9 = −x3N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2,

3I2ω̇10 = x2N

(
α, β1, β2, β3,

Ω

v

)
s(α)v2.

(37)
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5 First set of kinematic equations

In order to obtain a complete system of equations of motion, it needs the set of kinematic
equations which relate the velocities of the point D (i.e., the center of the disk Dn−1) and the
over-running medium �ow:

vD = vD · iv(α, β1, . . . , βn−2) = Ω̃


l
0
...
0

+ (−v∞)iv(−ξ, η1, . . . , ηn−2), (38)

where

iv(α, β1, . . . , βn−2) =


cosα

sinα cos β1

sinα sin β1 cos β2

. . . . . . . . .
sinα sin β1 . . . sin βn−3 cos βn−2

sinα sin β1 . . . sin βn−2

 . (39)

The equation (38) expresses the theorem of addition of velocities in projections on the
related coordinate system Dx1 . . . xn.

Indeed, the left-hand side of Eq. (38) is the velocity of the point D of the pendulum with
respect to the �ow in the projections on the related with the pendulum coordinate system
Dx1 . . . xn. Herewith, the vector iv(α, β1, . . . , βn−2) is the unit vector along the axis of the vector
vD. The vector iv(α, β1, . . . , βn−2) has the (generalized) spherical coordinates (1, α, β1, . . . , βn−2)
which determines the decomposition (39).

The right-hand side of the Eq. (38) is the sum of the velocities of the point D when you
rotate the pendulum (the �rst term), and the motion of the �ow (the second term). In this
case, in the �rst term, we have the coordinates of the vector âåêòîðà OD = {l, 0, . . . , 0} in the
coordinate system Dx1 . . . xn.

We explain the second term of the right-hand side of Eq. (38) in more detail. We have in it the
coordinates of the vector (−v∞) = {−v∞, 0, . . . , 0} in the immovable space. In order to describe
it in the projections on the related coordinate system Dx1 . . . xn, we need to make a (reverse)
rotation of the pendulum at the angle (−ξ) that is algebraically equivalent to multiplying the
value (−v∞) on the vector iv(−ξ, η1, . . . , ηn−2).

Thus, the �rst set of kinematic equations (38) has the following form in our case:

vD cosα = −v∞ cos ξ,

vD sinα cos β1 = lωrn−1 + v∞ sin ξ cos η1,

vD sinα sin β1 cos β2 = −lωrn−2 + v∞ sin ξ sin η1 cos η2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vD sinα sin β1 . . . sin βn−3 cos βn−2 = (−1)n+1lωr2 + v∞ sin ξ sin η1 . . . sin ηn−3 cos ηn−2,

vD sinα sin β1 . . . sin βn−2 = (−1)nlωr1 + v∞ sin ξ sin η1 . . . sin ηn−2.

(40)

In particular, in the case n = 5 this set of equations has the form:

vD cosα = −v∞ cos ξ,

vD sinα cos β1 = lω10 + v∞ sin ξ cos η1,

vD sinα sin β1 cos β2 = −lω9 + v∞ sin ξ sin η1 cos η2,

vD sinα sin β1 sin β2 cos β3 = lω7 + v∞ sin ξ sin η1 sin η2 cos η3,

vD sinα sin β1 sin β2 sin β3 = −lω4 + v∞ sin ξ sin η1 sin η2 sin η3.

(41)
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6 Second set of kinematic equations

We also need a set of kinematic equations which relate the angular velocity tensor Ω̃ and
coordinates ξ̇, η̇1, . . . , η̇n−2, ξ, η1, . . . , ηn−2 of the phase space (5) of pendulum studied, i.e., the
tangent bundle T∗S

n{ξ̇, η̇1, . . . , η̇n−2; ξ, η1, . . . , ηn−2}.
We draw the reasoning style allowing arbitrary dimension. The desired equations are

obtained from the following two sets of relations. Since the motion of the body takes place
in a Euclidean space En formally, at the beginning, we express the tuple consisting of a phase
variables ωr1 , ωr2 , . . . , ωrn−1 , through new variable z1, . . . , zn−1 (from the tuple z). For this, we
draw the following turns by the angles η1, . . . , ηn−2:

ωr1

ωr2

. . .
ωrn−1

 = T1,2(ηn−2) ◦ T2,3(ηn−3) ◦ . . . ◦ Tn−2,n−1(η1)


z1
z2
. . .
zn−1

 , (42)

where the matrix Tk,k+1(η), k = 1, . . . , n− 2, is obtained from the unit one by the existence of
the second-order minor Mk,k+1:

Tk,k+1 =


1 0 0 0 0

0
. . . 0 0 0

0 0 Mk,k+1 0 0

0 0 0
. . . 0

0 0 0 0 1

 , (43)

Mk,k+1 =

(
mk,k mk,k+1

mk+1,k mk+1,k+1

)
, mk,k = mk+1,k+1 = cos η, mk+1,k = −mk,k+1 = sin η.

In other words, the following relations hold:
z1
z2
. . .
zn−1

 = Tn−2,n−1(−η1) ◦ Tn−3,n−2(−η2) ◦ . . . ◦ T1,2(−ηn−2)


ωr1

ωr2

. . .
ωrn−1

 . (44)

In particular, for n = 5 the values ω4, ω7, ω9, ω10 are transformed through the composition
of the following three turns:

ω4

ω7

ω9

ω10

 = T1,2(η3) ◦ T2,3(η2) ◦ T3,4(η1)


z1
z2
z3
z4

 , (45)

where

T3,4(η) =


1 0 0 0
0 1 0 0
0 0 cos η − sin η
0 0 sin η cos η

 ,

T2,3(η) =


1 0 0 0
0 cos η − sin η 0
0 sin η cos η 0
0 0 0 1

 ,
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T1,2(η) =


cos η − sin η 0 0
sin η cos η 0 0
0 0 1 0
0 0 0 1

 .

In other words, the following relations hold:
z1
z2
z3
z4

 = T3,4(−η1) ◦ T2,3(−η2) ◦ T1,2(−η3)


ω4

ω7

ω9

ω10

 , (46)

i.e.,
z1 = ω4 cos η3 + ω7 sin η3,

z2 = (ω7 cos η3 − ω4 sin η3) cos η2 + ω9 sin η2,

z3 = [(−ω7 cos η3 + ω4 sin η3) sin η2 + ω9 cos η2] cos η1 + ω10 sin η1,

z4 = [(ω7 cos η3 − ω4 sin η3) sin η2 − ω9 cos η2] sin η1 + ω10 cos η1.

(47)

Then we substitute the following relations instead of the variables z:

zn−1 = ξ̇,

zn−2 = −η̇1
sin ξ

cos ξ
,

zn−3 = η̇2
sin ξ

cos ξ
sin η1,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

z2 = (−1)n+1η̇n−3
sin ξ

cos ξ
sin η1 . . . sin ηn−4,

z1 = (−1)nη̇n−2
sin ξ

cos ξ
sin η1 . . . sin ηn−3.

(48)

In particular, for n = 5 we have the following formula:

z4 = ξ̇,

z3 = −η̇1
sin ξ

cos ξ
,

z2 = η̇2
sin ξ

cos ξ
sin η1,

z1 = −η̇3
sin ξ

cos ξ
sin η1 sin η2.

(49)

Thus, two sets of Eqs. (42) and (48) give the second set of kinematic equations:
ωr1

ωr2

. . .
ωrn−1

 =

= T1,2(ηn−2) ◦ T2,3(ηn−3) ◦ . . . ◦
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◦Tn−3,n−2(η2)Tn−2,n−1(η1)



(−1)nη̇n−2
sin ξ
cos ξ

sin η1 . . . sin ηn−3

(−1)n+1η̇n−3
sin ξ
cos ξ

sin η1 . . . sin ηn−4

. . . . . . . . . . . . . . . . . . . . . . . . . . .

η̇2
sin ξ
cos ξ

sin η1
−η̇1

sin ξ
cos ξ

ξ̇


. (50)

In particular, for n = 5 we have:

ω4 = −ξ̇ sin η1 sin η2 sin η3 − η̇1
sin ξ

cos ξ
cos η1 sin η2 sin η3−

− η̇2
sin ξ

cos ξ
sin η1 cos η2 sin η3 − η̇3

sin ξ

cos ξ
sin η1 sin η2 cos η3,

ω7 = ξ̇ sin η1 sin η2 cos η3 + η̇1
sin ξ

cos ξ
cos η1 sin η2 cos η3+

+ η̇2
sin ξ

cos ξ
sin η1 cos η2 cos η3 − η̇3

sin ξ

cos ξ
sin η1 sin η2 sin η3,

ω9 = −ξ̇ sin η1 cos η2 − η̇1
sin ξ

cos ξ
cos η1 cos η2 + η̇2

sin ξ

cos ξ
sin η1 sin η2,

ω10 = ξ̇ cos η1 − η̇1
sin ξ

cos ξ
sin η1.

(51)

We see that three sets of the relations (36), (40) and (50) form the closed system of equations.
These three sets of equations include the following functions:

x2N

(
α, β1, . . . , βn−2,

Ω

vD

)
, . . . , xnN

(
α, β1, . . . , βn−2,

Ω

vD

)
, s(α). (52)

In this case, the function s is considered to be dependent only on α, and the functions
x2N , . . . , xnN may depend on, along with the angles α, β1, . . ., βn−2, generally speaking, the
reduced angular velocity tensor lΩ/vD.

7 Case where the moment of nonconservative forces is

independent of the angular velocity

We take the function rN as follows (the disk Dn−1 is given by the equation x1N ≡ 0):

rN =


0

x2N
...

xnN

 = R(α)iN , (53)

where
iN = iv

(π
2
, β1, . . . , βn−2

)
(54)

(see (39)).
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In our case

iN =


0

cos β1

sin β1 cos β2

. . .
sin β1 . . . sin βn−3 cos βn−2

sin β1 . . . sin βn−2

 . (55)

Thus, the equalities

x2N = R(α) cos β1, x3N = R(α) sin β1 cos β2, . . . ,

xn−1,N = R(α) sin β1 . . . sin βn−3 cos βn−2, xnN = R(α) sin β1 . . . sin βn−2,
(56)

hold and show that for the considered system, the moment of the nonconservative forces is
independent of the angular velocity tensor (it depends only on the angles α, β1, . . . , βn−2).

And so, for the construction of the force �eld, we use the pair of dynamical functions
R(α), s(α); the information about them is of a qualitative nature. Similarly to the choice of
the Chaplygin analytical functions (see [9, 10]), we take the dynamical functions s and R as
follows:

R(α) = A sinα, s(α) = B cosα, A,B > 0. (57)

7.1 Reduced systems

Theorem 7.1. The simultaneous equations (26), (40), (50) under conditions (31)�(33), (53),
(57) can be reduced to the dynamical system on the tangent bundle (5) of the (n−1)-dimensional
sphere (4).

Indeed, if we introduce the dimensionless parameter and the di�erentiation by the formulas

b∗ = ln0, n2
0 =

AB

(n− 2)I2
, < · >= n0v∞ <′>, (58)
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then the obtained equations have the following form:

ξ′′ + b∗ξ
′ cos ξ + sin ξ cos ξ−

−
[
η′21 + η′22 sin2 η1 + η′23 sin2 η1 sin

2 η2 + . . .+ η′2n−2 sin
2 η1 . . . sin

2 ηn−3

] sin ξ
cos ξ

= 0,

η′′1 + b∗η
′
1 cos ξ + ξ′η′1

1 + cos2 ξ

cos ξ sin ξ
−

−
[
η′22 + η′23 sin2 η2 + η′24 sin2 η2 sin

2 η3 + . . .+ η′2n−2 sin
2 η2 . . . sin

2 ηn−3

]
sin η1 cos η1 = 0,

η′′2 + b∗η
′
2 cos ξ + ξ′η′2

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
2

cos η1
sin η1

−

−
[
η′23 + η′24 sin2 η3 + η′25 sin2 η3 sin

2 η4 + . . .+ η′2n−2 sin
2 η3 . . . sin

2 ηn−3

]
sin η2 cos η2 = 0,

η′′3 + b∗η
′
3 cos ξ + ξ′η′3

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
3

cos η1
sin η1

+ 2η′2η
′
3

cos η2
sin η2

−

−
[
η′24 + η′25 sin2 η4 + η′26 sin2 η4 sin

2 η5 + . . .+ η′2n−2 sin
2 η4 . . . sin

2 ηn−3

]
sin η3 cos η3 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η′′n−4 + b∗η
′
n−4 cos ξ + ξ′η′n−4

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
n−4

cos η1
sin η1

+ . . .+ 2η′n−5η
′
n−4

cos ηn−5

sin ηn−5

−

−
[
η′2n−3 + η′2n−2 sin

2 ηn−3

]
sin ηn−4 cos ηn−4 = 0,

η′′n−3 + b∗η
′
n−3 cos ξ + ξ′η′n−3

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
n−3

cos η1
sin η1

+ . . .+ 2η′n−4η
′
n−3

cos ηn−4

sin ηn−4

−

− η′2n−2 sin ηn−3 cos ηn−3 = 0,

η′′n−2 + b∗η
′
n−2 cos ξ + ξ′η′n−2

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
n−2

cos η1
sin η1

+ . . .+ 2η′n−3η
′
n−2

cos ηn−3

sin ηn−3

= 0, b∗ > 0.

(59)

In particular, for n = 5 we have:

ξ′′ + b∗ξ
′ cos ξ + sin ξ cos ξ −

[
η′21 + η′22 sin2 η1 + η′23 sin2 η1 sin

2 η2
] sin ξ
cos ξ

= 0,

η′′1 + b∗η
′
1 cos ξ + ξ′η′1

1 + cos2 ξ

cos ξ sin ξ
−
[
η′22 + η′23 sin2 η2

]
sin η1 cos η1 = 0,

η′′2 + b∗η
′
2 cos ξ + ξ′η′2

1 + cos2 ξ

cos ξ sin ξ
+ 2η′1η

′
2

cos η1
sin η1

− η′23 sin η2 cos η2 = 0,

η′′3 + b∗η
′
3 cos ξ + ξ′η′3

1 + cos2 ξ

cos ξ sin ξ
+ 2η′1η

′
3

cos η1
sin η1

+ 2η′2η
′
3

cos η2
sin η2

= 0, b∗ > 0.

(60)

After the transition from the variables z (about the variables z see (48)) to the intermediate
dimensionless variables w

zk = n0v∞Zk, k = 1, . . . , n− 2, zn−1 = n0v∞Zn−1 − n0v∞b∗ sin ξ, (61)
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system (59) is equivalent to the system

ξ′ = Zn−1 − b∗ sin ξ, (62)

Z ′
n−1 = − sin ξ cos ξ + (Z2

1 + . . .+ Z2
n−2)

cos ξ

sin ξ
, (63)

Z ′
n−2 = −Zn−2Zn−1

cos ξ

sin ξ
− (Z2

1 + . . .+ Z2
n−3)

cos ξ

sin ξ

cos η1
sin η1

, (64)

Z ′
n−3 = −Zn−3Zn−1

cos ξ

sin ξ
+ Zn−3Zn−2

cos ξ

sin ξ

cos η1
sin η1

+

+(Z2
1 + . . .+ Z2

n−4)
cos ξ

sin ξ

1

sin η1

cos η2
sin η2

, (65)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z ′
1 = −Z1

cos ξ

sin ξ

{
n−2∑
s=1

(−1)s+1Zn−s
cos ηs−1

sin η1 . . . sin ηs−1

}
, (66)

η′1 = −Zn−2
cos ξ

sin ξ
, (67)

η′2 = Zn−3
cos ξ

sin ξ sin η1
, (68)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η′n−3 = (−1)n+1Z2
cos ξ

sin ξ sin η1 . . . sin ηn−4

, (69)

η′n−2 = (−1)nZ1
cos ξ

sin ξ sin η1 . . . sin ηn−3

, (70)

on the tangent bundle

T∗S
n−1{(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) ∈ R2(n−1) : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π} (71)

of the (n − 1)-dimensional sphere Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤
π, ηn−2 mod 2π}.

We see that the independent subsystem (62)�(69) of the order 2(n− 1)− 1 (due to cyclicity
of the variable ηn−2) can be substituted into the system (62)�(70) of the order 2(n−1) and can
be considered separately on its own (2n− 3)-dimensional manifold.

In particular, for n = 5 we obtain the following eighth-order system:

ξ′ = Z4 − b∗ sin ξ, (72)

Z ′
4 = − sin ξ cos ξ + (Z2

1 + Z2
2 + Z2

3)
cos ξ

sin ξ
, (73)

Z ′
3 = −Z3Z4

cos ξ

sin ξ
− (Z2

1 + Z2
2)
cos ξ

sin ξ

cos η1
sin η1

, (74)

Z ′
2 = −Z2Z4

cos ξ

sin ξ
+ Z2Z3

cos ξ

sin ξ

cos η1
sin η1

+ Z2
1

cos ξ

sin ξ

1

sin η1

cos η2
sin η2

, (75)

Z ′
1 = −Z1Z4

cos ξ

sin ξ
+ Z1Z3

cos ξ

sin ξ

cos η1
sin η1

− Z1Z2
cos ξ

sin ξ

1

sin η1

cos η2
sin η2

, (76)

η′1 = −Z3
cos ξ

sin ξ
, (77)
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η′2 = Z2
cos ξ

sin ξ sin η1
, (78)

η′3 = −Z1
cos ξ

sin ξ sin η1 sin η2
, (79)

on the tangent bundle

T∗S
4{(Z4, Z3, Z2, Z1; ξ, η1, η2, η3, ) ∈ R8 : 0 ≤ ξ, η1, η2 ≤ π, η3 mod 2π} (80)

of the four-dimensional sphere S4{(ξ, η1, η2, η3) ∈ R4 : 0 ≤ ξ, η1, η2 ≤ π, η3 mod 2π}.
We see that the independent seventh-order subsystem (72)�(78) (due to cyclicity of the

variable η3) can be substituted into the eighth-order system (72)�(79) and can be considered
separately on its own seven-dimensional manifold.

7.2 General remarks on integrability of system for any �nite n

As already mentioned, in order to integrate completely the system (62)�(70) of the order
2(n − 1), we have to obtain, generally speaking, 2n − 3 independent �rst integrals. But the
systems considered have such symmetries that allow to reduce a su�cient number of the �rst
integrals down to n, in order to integrate the system.

7.2.1 The system under the absence of a force �eld

Let study the system (62)�(70) on the tangent bundle T∗S
n−1{Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2}

of the (n − 1)-dimensional sphere Sn−1{ξ, η1, . . . , ηn−2}. At the same time, we get out of this
system the conservative one. Furthermore, we assume that the function (81) is identically equal
to zero (in particular, b∗ = 0, and also the coe�cient sin ξ cos ξ in Eq. (63) is absent):

Γv

(
α, β1, . . . , βn−2,

Ω

v

)
= |rN | = (rN , iN(β1, . . . , βn−2)) =

= 0 · cos π
2
+

n∑
s=2

xsN

(
α, β1, . . . , βn−2,

Ω

v

)
isN(β1, . . . , βn−2) ≡ 0. (81)

Here isN(β1, . . . , βn−2), s = 1, . . . , n, (i1N(β1, . . . , βn−2) ≡ 0) are the components of the
unit vector on the axis of the vector rN = {0, x2N , . . . , xnN} on (n − 2)-dimensional sphere
Sn−2{β1, . . . , βn−2}, de�ning the equation α = π/2 as the equatorial section of corresponding
(n− 1)-dimensional sphere Sn−1{α, β1, . . . , βn−2}.

The system studied has the form
ξ′ = Zn−1, (82)

Z ′
n−1 = (Z2

1 + . . .+ Z2
n−2)

cos ξ

sin ξ
, (83)

Z ′
n−2 = −Zn−2Zn−1

cos ξ

sin ξ
− (Z2

1 + . . .+ Z2
n−3)

cos ξ

sin ξ

cos η1
sin η1

, (84)

Z ′
n−3 = −Zn−3Zn−1

cos ξ

sin ξ
+ Zn−3Zn−2

cos ξ

sin ξ

cos η1
sin η1

+

+(Z2
1 + . . .+ Z2

n−4)
cos ξ

sin ξ

1

sin η1

cos η2
sin η2

, (85)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Z ′
1 = −Z1

cos ξ

sin ξ

{
n−2∑
s=1

(−1)s+1Zn−s
cos ηs−1

sin η1 . . . sin ηs−1

}
, (86)

η′1 = −Zn−2
cos ξ

sin ξ
, (87)

η′2 = Zn−3
cos ξ

sin ξ sin η1
, (88)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η′n−3 = (−1)n+1Z2
cos ξ

sin ξ sin η1 . . . sin ηn−4

, (89)

η′n−2 = (−1)nZ1
cos ξ

sin ξ sin η1 . . . sin ηn−3

. (90)

The system (82)�(90) describes the motion of a rigid body in the absence of an external
force �eld.

Theorem 7.2. System (82)�(90) has n analytical independent �rst integrals as follows:

Φ1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√
Z2

1 + . . .+ Z2
n−1 = C1 = const, (91)

Φ2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√

Z2
1 + . . .+ Z2

n−2 sin ξ = C2 = const, (92)

Φ3(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√

Z2
1 + . . .+ Z2

n−3 sin ξ sin η1 = C3 = const, (93)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φn−2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√

Z2
1 + Z2

2 sin ξ sin η1 . . . sin ηn−4 = Cn−2 = const, (94)

Φn−1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = Z1 sin ξ sin η1 . . . sin ηn−3 = Cn−1 = const, (95)

Φn(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = Cn = const. (96)

These �rst integrals (91)�(95) states that as the external force �eld is not present, it is
preserved (in general, nonzero) n − 1 components of the angular velocity tensor of a (�n-
dimensional�) rigid body, precisely

ωr1 ≡ ω0
r1
= const, . . . , ωrn−1 ≡ ω0

rn−1
= const. (97)

In particular, the existence of the �rst integral (91) is explained by the equation

Z2
1 + . . .+ Z2

n−1 =
1

n2
0v

2
∞
[ω2

r1
+ . . .+ ω2

rn−1
] ≡ C2

1 = const. (98)

The �rst integral (96) has the kinematic sense, �attaches� the equation on ηn−2 and can be
found from the following quadrature:

dηn−2

dηn−3

= −Z1

Z2

1

sin ηn−3

, (99)

in this case, if we use the levels of the �rst integrals (94), (95) and obtain the equality

Z1

Z2

= ±

√
C2

n−2

C2
n−1

sin2 ηn−3 − 1, (100)
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then the quadrature (99) has the form

ηn−2 = ±
∫

du

(1− u2)

√(
C2

n−2

C2
n−1

− 1
)
− C2

n−2

C2
n−1

u2

, u = cos ηn−3. (101)

The calculation of its quadrature implies to the following form:

ηn−2 + Cn = ±arctg cos ηn−3√
C2

n−2

C2
n−1

sin2 ηn−3 − 1

, Cn = const, (102)

that allows to obtain the �rst integral (96). Transforming the last equality, we have the following
invariant relation:

tg2(ηn−2 + Cn) =
C2

n−1

(C2
n−2 − C2

n−1)tg
2ηn−3 − C2

n−1

. (103)

Now we rephrase the Theorem 7.2.

Theorem 7.3. System (82)�(90) possesses n independent �rst integrals of the following form:

Ψ1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φ2

1

Φ2

=
Z2

1 + . . .+ Z2
n−1√

Z2
1 + . . .+ Z2

n−2 sin ξ
= C ′

1 = const, (104)

Ψ2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = C ′
2 = const, (105)

Ψ3(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φn−2

Φn−1

=

√
Z2

1 + Z2
2

Z1 sin ηn−3

= C ′
3 = const, (106)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψn−2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φ3

Φ4

=

√
Z2

1 + . . .+ Z2
n−3√

Z2
1 + . . .+ Z2

n−4 sin η2
= C ′

n−2 = const, (107)

Ψn−1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φ2

Φ3

=

√
Z2

1 + . . .+ Z2
n−2√

Z2
1 + . . .+ Z2

n−3 sin η1
= C ′

n−1 = const, (108)

Ψn(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = C ′
n = const. (109)

The �rst integral (109) has also the kinematic sense and �attaches� the equation on ηn−2,
and the functions Ψ2,Ψn can be selected equal to Φ2,Φn, respectively.

In the formulation of the Theorem 7.3 (unlike Theorem 7.2), the characteristics of smooth
of the �rst integrals is absent. Precisely, where the denominators (or the numerators and
denominators simultaneously) of the �rst integrals (104)�(109) are equal to zero, the integrals
considered, as functions, are the singularities. Furthermore, its are not often, generally speaking,
even the continuous functions.

By Theorem 7.3, the transformed set of the �rst integrals (104)�(109) of the system (82)�
(90) (i.e., the system under the absence of a force �eld) still remains as the set of the �rst
integrals of the system studied.

For the complete integration of system (82)�(90) of the order 2(n− 1), in general, we need
2n− 3 independent �rst integrals. However, after the following change of variables

Zn−1

Zn−2

. . .
Z2

Z1

 →


wn−1

wn−2

. . .
w2

w1

 ,
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wn−1 = −Zn−1, wn−2 =
√

Z2
1 + . . .+ Z2

n−2, wn−3 =
Z2

Z1

, wn−4 = − Z3√
Z2

1 + Z2
2

, . . . , (110)

w2 = − Zn−3√
Z2

1 + . . .+ Z2
n−4

, w1 = − Zn−2√
Z2

1 + . . .+ Z2
n−3

,

the system (82)�(90) splits as follows:

ξ′ = −wn−1,

w′
n−1 = −w2

n−2

cos ξ

sin ξ
,

w′
n−2 = wn−2wn−1

cos ξ

sin ξ
,

 (111)

w′
s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2)

1 + w2
s

ws

cos ηs
sin ηs

,

η′s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), s = 1, . . . , n− 3,

 (112)

η′n−2 = dn−2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), (113)

where

d1(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = −Zn−2(wn−1, . . . , w1)
cos ξ

sin ξ
,

d2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = Zn−3(wn−1, . . . , w1)
cos ξ

sin ξ sin η1
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn−2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = (−1)nZ1(wn−1, . . . , w1)
cos ξ

sin ξ sin η1 . . . sin ηn−3

,

(114)

in our case
Zk = Zk(wn−1, . . . , w1), k = 1, . . . , n− 2, (115)

are the functions, by virtue of change (110).
The system (111)�(113) is studied on the tangent bundle

T∗S
n−1{(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) ∈ R2(n−1) : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}

(116)
of the (n − 1)-dimensional sphere Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤
π, ηn−2 mod 2π}.

We see that the independent third-order subsystem (111) (which can be considered
separately on its own three-dimensional manifold), n− 3 independent second-order subsystems
(112) (after the change of independent variable) can be substituted into the system (111)�(113)
of the order 3+2(n−3)+1 = 2(n−1), and also Eq. (113) on ηn−2 is separated (due to cyclicity
of the variable ηn−2).

Thus, for the complete integration of the system (111)�(113), it su�ces to specify two
independent �rst integrals of system (111), one by one �rst integral of systems (112) (all n− 3
pieces), and an additional �rst integral that �attaches� Eq. (113) (i.e., only n).

Remark 7.1. We write the �rst integrals (104)�(109) in the variables w1, . . . , wn−1 by virtue
of (110). We have:

Θ1(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) =
w2

n−2 + w2
n−1

wn−2 sin ξ
= C ′′

1 = const, (117)
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Θ2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = wn−2 sin ξ = C ′′
2 = const, (118)

Θs+2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) =

√
1 + w2

s

sin ηs
= C ′′

s+2 = const, s = 1, . . . , n− 3, (119)

Θn(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = C ′′
n = const. (120)

Thus, two independent �rst integrals (117), (118) are su�cient to integrate the system (111),
the �rst integrals (119) (all n− 3 pieces) are su�cient to integrate the independent �rst-order
equations

dws

dηs
=

1 + w2
s

ws

cos ηs
sin ηs

, s = 1, . . . , n− 3, (121)

that are equivalent to the systems (112) after the change of independent variable, and, �nally,
the �rst integral (120) is su�cient �to attach� Eq. (113). We have proved the following Theorem.

Theorem 7.4. The system (82)�(90) of the order 2(n− 1) possesses the su�cient number (n)
of the independent �rst integrals.

7.2.2 The system under the presence of a conservative force �eld

Now let us study the system (62)�(70) under assumption b∗ = 0. In this case, we obtain the
conservative system. Precisely, the coe�cient sin ξ cos ξ in Eq. (63) (unlike the system (82)�(90))
characterizes the presence of the force �eld. The system studied has the form

ξ′ = Zn−1, (122)

Z ′
n−1 = − sin ξ cos ξ + (Z2

1 + . . .+ Z2
n−2)

cos ξ

sin ξ
, (123)

Z ′
n−2 = −Zn−2Zn−1

cos ξ

sin ξ
− (Z2

1 + . . .+ Z2
n−3)

cos ξ

sin ξ

cos η1
sin η1

, (124)

Z ′
n−3 = −Zn−3Zn−1

cos ξ

sin ξ
+ Zn−3Zn−2

cos ξ

sin ξ

cos η1
sin η1

+

+(Z2
1 + . . .+ Z2

n−4)
cos ξ

sin ξ

1

sin η1

cos η2
sin η2

, (125)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z ′
1 = −Z1

cos ξ

sin ξ

{
n−2∑
s=1

(−1)s+1Zn−s
cos ηs−1

sin η1 . . . sin ηs−1

}
, (126)

η′1 = −Zn−2
cos ξ

sin ξ
, (127)

η′2 = Zn−3
cos ξ

sin ξ sin η1
, (128)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η′n−3 = (−1)n+1Z2
cos ξ

sin ξ sin η1 . . . sin ηn−4

, (129)

η′n−2 = (−1)nZ1
cos ξ

sin ξ sin η1 . . . sin ηn−3

. (130)

Thus, the system (122)�(130) describes the motion of a rigid body in a conservative �eld of
external forces.
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Theorem 7.5. System (122)�(130) has n independent analytical �rst integrals as follows:

Φ1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = Z2
1 + . . .+ Z2

n−1 + sin2 ξ = C1 = const, (131)

Φ2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√

Z2
1 + . . .+ Z2

n−2 sin ξ = C2 = const, (132)

Φ3(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√

Z2
1 + . . .+ Z2

n−3 sin ξ sin η1 = C3 = const, (133)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φn−2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
√

Z2
1 + Z2

2 sin ξ sin η1 . . . sin ηn−4 = Cn−2 = const, (134)

Φn−1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = Z1 sin ξ sin η1 . . . sin ηn−3 = Cn−1 = const, (135)

Φn(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = Cn = const. (136)

The �rst integral (131) is an integral of the total energy. The �rst integral (136) has the
kinematic sense, �attaches� the equation on βn−2, and was found above.

Now we rephrase the Theorem 7.5.

Theorem 7.6. System (122)�(130) possesses n independent �rst integrals of the following
form::

Ψ1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φ1

Φ2

=
Z2

1 + . . .+ Z2
n−1 + sin2 ξ√

Z2
1 + . . .+ Z2

n−2 sin ξ
= C ′

1 = const, (137)

Ψ2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = C ′
2 = const, (138)

Ψ3(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φn−2

Φn−1

=

√
Z2

1 + Z2
2

Z1 sin ηn−3

= C ′
3 = const, (139)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψn−2(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φ3

Φ4

=

√
Z2

1 + . . .+ Z2
n−3√

Z2
1 + . . .+ Z2

n−4 sin η2
= C ′

n−2 = const, (140)

Ψn−1(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) =
Φ2

Φ3

=

√
Z2

1 + . . .+ Z2
n−2√

Z2
1 + . . .+ Z2

n−3 sin η1
= C ′

n−1 = const, (141)

Ψn(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) = C ′
n = const. (142)

The functions Ψ2,Ψn can be selected equal to Φ2,Φn, respectively.
In the formulation of the Theorem 7.6 (unlike Theorem 7.5), the characteristics of smooth

of the �rst integrals is absent. Precisely, where the denominators (or the numerators and
denominators simultaneously) of the �rst integrals (137)�(142) are equal to zero, the integrals
considered, as functions, are the singularities. Furthermore, its are not often, generally speaking,
even the continuous functions.

By Theorem 7.6, the transformed set of the �rst integrals (137)�(142) of the system (122)�
(130) (i.e., the system under the presence of a conservative force �eld) still remains as the set
of the �rst integrals of the system studied.

For the complete integration of system (122)�(130) of the order 2(n − 1), in general, we
need 2n−3 independent �rst integrals. However, after the change of variables (110) the system
(122)�(130) splits as follows:

ξ′ = −wn−1,

w′
n−1 = sin ξ cos ξ − w2

n−2

cos ξ

sin ξ
,

w′
n−2 = wn−2wn−1

cos ξ

sin ξ
,

 (143)
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w′
s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2)

1 + w2
s

ws

cos ηs
sin ηs

,

η′s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), s = 1, . . . , n− 3,

 (144)

η′n−2 = dn−2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), (145)

where the conditions (114) hold.
The system (143)�(145) is studied on the tangent bundle (116) of the (n − 1)-dimensional

sphere Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}.
We see that the independent third-order subsystem (143) (which can be considered

separately on its own three-dimensional manifold), n− 3 independent second-order subsystems
(144) (after the change of independent variable) can be substituted into the system (143)�(145)
of the order 3+2(n−3)+1 = 2(n−1), and also Eq. (145) on ηn−2 is separated (due to cyclicity
of the variable ηn−2).

Thus, for the complete integration of the system (143)�(145), it su�ces to specify two
independent �rst integrals of system (143), one by one �rst integral of systems (144) (all n− 3
pieces), and an additional �rst integral that �attaches� Eq. (145) (i.e., only n).

Remark 7.2. We write the �rst integrals (137)�(142) in the variables w1, . . . , wn−1 by virtue
of (110). We have:

Θ1(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) =
w2

n−2 + w2
n−1 + sin2 ξ

wn−2 sin ξ
= C ′′

1 = const, (146)

Θ2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = wn−2 sin ξ = C ′′
2 = const, (147)

Θs+2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) =

√
1 + w2

s

sin ηs
= C ′′

s+2 = const, s = 1, . . . , n− 3, (148)

Θn(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = C ′′
n = const. (149)

Thus, two independent �rst integrals (146), (147) are su�cient to integrate the system (143),
the �rst integrals (148) (all n− 3 pieces) are su�cient to integrate the independent �rst-order
equations

dws

dηs
=

1 + w2
s

ws

cos ηs
sin ηs

, s = 1, . . . , n− 3, (150)

that is equivalent to the systems (144) after the change of independent variable, and, �nally, the
�rst integral (149) is su�cient �to attach� Eq. (145). We have proved the following Theorem.

Theorem 7.7. The system (122)�(130) of the order 2(n − 1) possesses the su�cient number
(n) of the independent �rst integrals.

7.3 Complete list of the �rst integrals for any �nite n

We turn now to the integration of the desired system (62)�(70) of the order 2(n−1) (without
any simpli�cations, i.e., in the presence of all coe�cients).

Similarly, for the complete integration of system (62)�(70) of the order 2(n− 1), in general,
we need 2n − 3 independent �rst integrals. However, after the change of variables (110) the
system (62)�(70) splits as follows:

ξ′ = −wn−1 − b∗ sin ξ,

w′
n−1 = sin ξ cos ξ − w2

n−2

cos ξ

sin ξ
,

w′
n−2 = wn−2wn−1

cos ξ

sin ξ
,

 (151)
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w′
s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2)

1 + w2
s

ws

cos ηs
sin ηs

,

η′s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), s = 1, . . . , n− 3,

 (152)

η′n−2 = dn−2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), (153)

where the conditions (114) hold.
The system (151)�(153) is studied on the tangent bundle (116) of the (n − 1)-dimensional

sphere Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}.
We see that the independent third-order subsystem (151) (which can be considered

separately on its own three-dimensional manifold), n− 3 independent second-order subsystems
(152) (after the change of independent variable) can be substituted into the system (151)�(153)
of the order 3+2(n−3)+1 = 2(n−1), and also Eq. (153) on ηn−2 is separated (due to cyclicity
of the variable ηn−2).

Thus, for the complete integration of the system (151)�(153), it su�ces to specify two
independent �rst integrals of system (151), one by one �rst integral of systems (152) (all n− 3
pieces), and an additional �rst integral that �attaches� Eq. (153) (i.e., only n).

First, we compare the third-order system (151) with the nonautonomous second-order
system

dwn−1

dξ
=

sin ξ cos ξ − w2
n−2 cos ξ/ sin ξ

−wn−1 − b∗ sin ξ
,

dwn−2

dξ
=

wn−2wn−1 cos ξ/ sin ξ

−wn−1 − b∗ sin ξ
.

(154)

Using the substitution τ = sin ξ, we rewrite system (154) in the algebraic form:

dwn−1

dτ
=

τ − w2
n−2/τ

−wn−1 − b∗τ
,

dwn−2

dτ
=

wn−2wn−1/τ

−wn−1 − b∗τ
.

(155)

Further, if we introduce the uniform variables by the formulas

wn−1 = u2τ, wn−2 = u1τ, (156)

we reduce system (155) to the following form:

τ
du2

dτ
+ u2 =

1− u2
1

−u2 − b∗
,

τ
du1

dτ
+ u1 =

u1u2

−u2 − b∗
,

(157)

which is equivalent to

τ
du2

dτ
=

1− u2
1 + u2

2 − bu2

−u2 − b∗
,

τ
du1

dτ
=

2u1u2 − bu1

−u2 − b∗
.

(158)

We compare the second-order system (158) with the nonautonomous �rst-order equation

du2

du1

=
1− u2

1 + u2
2 + b∗u2

2u1u2 + b∗u1

, (159)
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which can be easily reduced to the exact di�erential equation

d

(
u2
2 + u2

1 + b∗u2 + 1

u1

)
= 0. (160)

Therefore, Eq. (159) has the following �rst integral:

u2
2 + u2

1 + b∗u2 + 1

u1

= C1 = const, (161)

which in the old variables has the form

Θ1(wn−1, wn−2; ξ) =
w2

n−1 + w2
n−2 + b∗wn−1 sin ξ + sin2 ξ

wn−2 sin ξ
= C1 = const. (162)

Remark 7.3. We consider system (151) with variable dissipation with zero mean (see [11, 12]),
which becomes conservative for b∗ = 0:

ξ′ = −wn−1,

w′
n−1 = sin ξ cos ξ − w2

n−2

cos ξ

sin ξ
,

w′
n−2 = wn−2wn−1

cos ξ

sin ξ
.

(163)

It has two analytical �rst integrals of the form

w2
n−1 + w2

n−2 + sin2 ξ = C∗
1 = const, (164)

wn−2 sin ξ = C∗
2 = const. (165)

It is obvious that the ratio of the �rst integrals (164), (165) is also a �rst integral of system
(163). However, for b∗ ̸= 0 both functions

w2
n−1 + w2

n−2 + b∗wn−1 sin ξ + sin2 ξ (166)

and (165) are not �rst integrals of system (151), but their ratio (i.e., the ratio of the functions
(166) and (165)) is a �rst integral of system (151) for any b∗.

Later on, we �nd the obvious form of the additional �rst integral of the third-order system
(151). For this, at the beginning, we transform the invariant relation (161) for u1 ̸= 0 as follows:(

u2 +
b∗
2

)2

+

(
u1 −

C1

2

)2

=
b2∗ + C2

1

4
− 1. (167)

We see that the parameters of the given invariant relation must satisfy the condition

b2∗ + C2
1 − 4 ≥ 0, (168)

and the phase space of system (151) is strati�ed into a family of surfaces de�ned by Eq. (167)
in the coordinates u1, u2.

Thus, by virtue of relation (161), the �rst equation of system (158) has the form

τ
du2

dτ
=

2(1 + b∗u2 + u2
2)− C1U1(C1, u2)

−u2 − b∗
, (169)
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where

U1(C1, u2) =
1

2
{C1 ±

√
C2

1 − 4(u2
2 + b∗u2 + 1)}, (170)

and the integration constant C1 is chosen from condition (168).
Therefore, the quadrature for the search of an additional �rst integral of system (151) has

the form ∫
dτ

τ
=

∫
(−b∗ − u2)du2

2(1 + b∗u2 + u2
2)− C1{C1 ±

√
C2

1 − 4(u2
2 + b∗u2 + 1)}/2

. (171)

Obviously, the left-hand side up to an additive constant is equal to

ln | sin ξ|. (172)

If

u2 +
b∗
2

= r1, b21 = b2∗ + C2
1 − 4, (173)

then the right-hand side of Eq. (171) has the form

−1

4

∫
d(b21 − 4r21)

(b21 − 4r21)± C1

√
b21 − 4r21

− b

∫
dr1

(b21 − 4r21)± C1

√
b21 − 4r21

=

= −1

2
ln

∣∣∣∣∣
√
b21 − 4r21
C1

± 1

∣∣∣∣∣± b

2
I1, (174)

where

I1 =

∫
dr3√

b21 − r23(r3 ± C1)
, r3 =

√
b21 − 4r21. (175)

In the calculation of integral (175), the following three cases are possible.
I. b∗ > 2.

I1 = − 1

2
√

b2∗ − 4
ln

∣∣∣∣∣
√

b2∗ − 4 +
√

b21 − r23
r3 ± C1

± C1√
b2∗ − 4

∣∣∣∣∣+
+

1

2
√

b2∗ − 4
ln

∣∣∣∣∣
√

b2∗ − 4−
√

b21 − r23
r3 ± C1

∓ C1√
b2∗ − 4

∣∣∣∣∣+ const. (176)

II. b∗ < 2.

I1 =
1√

4− b2∗
arcsin

±C1r3 + b21
b1(r3 ± C1)

+ const. (177)

III. b∗ = 2.

I1 = ∓
√

b21 − r23
C1(r3 ± C1)

+ const. (178)

When we return to the variable

r1 =
wn−1

sin ξ
+

b∗
2
, (179)

we obtain the �nal form for the value I1:
I. b∗ > 2.

I1 = − 1

2
√

b2∗ − 4
ln

∣∣∣∣∣
√
b2∗ − 4± 2r1√
b21 − 4r21 ± C1

± C1√
b2∗ − 4

∣∣∣∣∣+
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+
1

2
√

b2∗ − 4
ln

∣∣∣∣∣
√

b2∗ − 4∓ 2r1√
b21 − 4r21 ± C1

∓ C1√
b2∗ − 4

∣∣∣∣∣+ const. (180)

II. b∗ < 2.

I1 =
1√

4− b2∗
arcsin

±C1

√
b21 − 4r21 + b21

b1(
√

b21 − 4r21 ± C1)
+ const. (181)

III. b∗ = 2.

I1 = ∓ 2r1

C1(
√
b21 − 4r21 ± C1)

+ const. (182)

Thus, we have found an additional �rst integral for the third-order system (151), i.e., we
have a complete set of �rst integrals that are transcendental functions of the phase variables.

Remark 7.4. In the expression of the found �rst integral, we must formally substitute the
left-hand side of the �rst integral (161) instead of C1.

Then the obtained additional �rst integral has the following structure:

Θ2(wn−1, wn−2; ξ) = G2

(
sin ξ,

wn−1

sin ξ
,
wn−2

sin ξ

)
= C2 = const. (183)

Thus, we have found two �rst integrals (162), (183) of the independent third-order system
(151). For its complete integrability, it su�ces to �nd one by one �rst integral for the systems
(152) (all n− 3 pieces), and an additional �rst integral that �attaches� Eq. (153).

Indeed, the desired �rst integrals coincide with the �rst integrals (148), (149), precisely:

Θs+2(ws; ηs) =

√
1 + w2

s

sin ηs
= C ′′

s+2 = const, s = 1, . . . , n− 3, (184)

Θn(wn−3, wn−4; ηn−4, ηn−3, ηn−2) = ηn−2 ± arctg
Cn−1 cos ηn−3√

C2
n−2 sin

2 ηn−3 − C2
n−1

= C ′′
n = const, (185)

in this case, in the left-hand side of Eq. (185), we must substitute instead of Cn−2, Cn−1 the
�rst integrals (184) for s = n− 4, n− 3.

Theorem 7.8. The system (151)�(153) of the order 2(n − 1) possesses the su�cient number
(n) of the independent �rst integrals (162), (183), (184), (185).

Therefore, in the considered case, the system of dynamical equations (62)�(70) has n
�rst integrals expressing by relations (162), (183), (184), (185), which are the transcendental
functions of its phase variables (in the sense of the complex analysis) and are expressed as a
�nite combination of elementary functions (in this case, we use the expressions (171)�(182)).

Theorem 7.9. Three sets of relations (26), (40), (50) under conditions (31)�(33), (53), (57)
possess n the �rst integrals (the complete set), which are the transcendental function (in the
sense of complex analysis) and are expressed as a �nite combination of elementary functions.
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8 Case where the moment of nonconservative forces

depends on the angular velocity

8.1 Dependence on the angular velocity

This section is devoted to dynamics of the multi-dimensional rigid body in the multi-
dimensional space En. Since this subsection is devoted to the study of the case of the
motion where the moment of forces depends on the angular velocity tensor, we introduce this
dependence in the general case.

Let x = (x1N , . . . , xnN) be the coordinates of the point N of application of a nonconservative
force (interaction with a medium) on the (n− 1)-dimensional disk Dn−1, and Q = (Q1, . . . , Qn)
be the components independent of the angular velocity. We introduce only the linear dependence
of the functions (x1N , . . . , xnN) on the angular velocity tensor Ω since the introduction of this
dependence itself is not a priori obvious.

Thus, we accept the following dependence:

x = Q+R, (186)

where R = (R1, . . . , Rn) is a vector-valued function containing the angular velocity tensor Ω.
Here, the dependence of the function R on the angular velocity tensor is gyroscopic:

R =


R1

R2
...
Rn

 = − 1

vD
Ω


h1

h2
...
hn

 , (187)

where (h1, . . . , hn) are certain positive parameters.
Now, for our problem, since x1N = xN ≡ 0, we have

x2N = Q2 − h1

ωrn−1

vD
, x3N = Q3 + h1

ωrn−2

vD
, . . . , xnN = Qn + (−1)n+1h1

ωr1

v
. (188)

Thus, the function rN is selected in the following form (the disk Dn−1 is de�ned by the
equation x1N ≡ 0):

rN =


0

x2N
...

xnN

 = R(α)iN − 1

vD
Ωh, (189)

where

iN = iv

(π
2
, β1, . . . , βn−2

)
, h =


h1

h2
...
hn

 , Ω ∈ so(n) (190)

(see (6), (39)).
In our case

iN =


0

cos β1

sin β1 cos β2

. . .
sin β1 . . . sin βn−3 cos βn−2

sin β1 . . . sin βn−2

 . (191)
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Thus, the following relations

x2N = R(α) cos β1 − h1

ωrn−1

vD
, x3N = R(α) sin β1 cos β2 + h1

ωrn−2

vD
, . . . ,

xn−1,N = R(α) sin β1 . . . sin βn−3 cos βn−2 + (−1)nh1
ωr2

v
,

xnN = R(α) sin β1 . . . sin βn−2 + (−1)n+1h1
ωr1

v
,

(192)

hold, which show that an additional dependence of the damping (or accelerating in some
domains of the phase space) moment of the nonconservative forces is also present in the system
considered (i.e., the moment depends on the angular velocity tensor).

And so, for the construction of the force �eld, we use the pair of dynamical functions
R(α), s(α); the information about them is of a qualitative nature. Similarly to the choice of the
Chaplygin analytical functions, we take the dynamical functions s and R as follows:

R(α) = A sinα, s(α) = B cosα, A,B > 0. (193)

8.2 Reduced systems

Theorem 8.1. The simultaneous equations (26), (40), (50) under conditions (31)�(33), (189),
(193) can be reduced to the dynamical system on the tangent bundle (5) of the (n − 1)-
dimensional sphere (4).

Indeed, if we introduce the dimensionless parameters and the di�erentiation by the formulas

b∗ = ln0, n2
0 =

AB

(n− 2)I2
, H1∗ =

h1B

(n− 2)I2n0

, < · >= n0v∞ <′>, (194)
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then the obtained equations have the following form:

ξ′′ + (b∗ −H1∗)ξ
′ cos ξ + sin ξ cos ξ−

−
[
η′21 + η′22 sin2 η1 + η′23 sin2 η1 sin

2 η2 + . . .+ η′2n−2 sin
2 η1 . . . sin

2 ηn−3

] sin ξ
cos ξ

= 0,

η′′1 + (b∗ −H1∗)η
′
1 cos ξ + ξ′η′1

1 + cos2 ξ

cos ξ sin ξ
−

−
[
η′22 + η′23 sin2 η2 + η′24 sin2 η2 sin

2 η3 + . . .+ η′2n−2 sin
2 η2 . . . sin

2 ηn−3

]
sin η1 cos η1 = 0,

η′′2 + (b∗ −H1∗)η
′
2 cos ξ + ξ′η′2

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
2

cos η1
sin η1

−

−
[
η′23 + η′24 sin2 η3 + η′25 sin2 η3 sin

2 η4 + . . .+ η′2n−2 sin
2 η3 . . . sin

2 ηn−3

]
sin η2 cos η2 = 0,

η′′3 + (b∗ −H1∗)η
′
3 cos ξ + ξ′η′3

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
3

cos η1
sin η1

+ 2η′2η
′
3

cos η2
sin η2

−

−
[
η′24 + η′25 sin2 η4 + η′26 sin2 η4 sin

2 η5 + . . .+ η′2n−2 sin
2 η4 . . . sin

2 ηn−3

]
sin η3 cos η3 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η′′n−4 + (b∗ −H1∗)η
′
n−4 cos ξ + ξ′η′n−4

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
n−4

cos η1
sin η1

+ . . .+ 2η′n−5η
′
n−4

cos ηn−5

sin ηn−5

−

−
[
η′2n−3 + η′2n−2 sin

2 ηn−3

]
sin ηn−4 cos ηn−4 = 0,

η′′n−3 + (b∗ −H1∗)η
′
n−3 cos ξ + ξ′η′n−3

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
n−3

cos η1
sin η1

+ . . .+ 2η′n−4η
′
n−3

cos ηn−4

sin ηn−4

−

− η′2n−2 sin ηn−3 cos ηn−3 = 0,

η′′n−2 + (b∗ −H1∗)η
′
n−2 cos ξ + ξ′η′n−2

1 + cos2 ξ

cos ξ sin ξ
+

+ 2η′1η
′
n−2

cos η1
sin η1

+ . . .+ 2η′n−3η
′
n−2

cos ηn−3

sin ηn−3

= 0, b∗ > 0, H1∗ > 0.

(195)

In particular, for n = 5 we have:

ξ′′ + (b∗ −H1∗)ξ
′ cos ξ + sin ξ cos ξ −

[
η′21 + η′22 sin2 η1 + η′23 sin2 η1 sin

2 η2
] sin ξ
cos ξ

= 0,

η′′1 + (b∗ −H1∗)η
′
1 cos ξ + ξ′η′1

1 + cos2 ξ

cos ξ sin ξ
−
[
η′22 + η′23 sin2 η2

]
sin η1 cos η1 = 0,

η′′2 + (b∗ −H1∗)η
′
2 cos ξ + ξ′η′2

1 + cos2 ξ

cos ξ sin ξ
+ 2η′1η

′
2

cos η1
sin η1

− η′23 sin η2 cos η2 = 0,

η′′3 + (b∗ −H1∗)η
′
3 cos ξ + ξ′η′3

1 + cos2 ξ

cos ξ sin ξ
+ 2η′1η

′
3

cos η1
sin η1

+ 2η′2η
′
3

cos η2
sin η2

= 0,

b∗ > 0, H1∗ > 0.

(196)

After the transition from the variables z (about the variables z see (48)) to the intermediate
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dimensionless variables w

zk = n0v∞(1 + b∗H1∗)Zk, k = 1, . . . , n− 2, zn−1 = n0v∞(1 + b∗H1∗)Zn−1 − n0v∞b∗ sin ξ, (197)

system (195) is equivalent to the system

ξ′ = (1 + b∗H1∗)Zn−1 − b∗ sin ξ, (198)

Z ′
n−1 = − sin ξ cos ξ+

+(1 + b∗H1∗) (Z
2
1 + . . .+ Z2

n−2)
cos ξ

sin ξ
+H1∗Zn−1 cos ξ, (199)

Z ′
n−2 = − (1 + b∗H1∗)Zn−2Zn−1

cos ξ

sin ξ
−

− (1 + b∗H1∗) (Z
2
1 + . . .+ Z2

n−3)
cos ξ

sin ξ

cos η1
sin η1

+H1∗Zn−2 cos ξ, (200)

Z ′
n−3 = − (1 + b∗H1∗)Zn−3Zn−1

cos ξ

sin ξ
+ (1 + b∗H1∗)Zn−3Zn−2

cos ξ

sin ξ

cos η1
sin η1

+

+(1 + b∗H1∗) (Z
2
1 + . . .+ Z2

n−4)
cos ξ

sin ξ

1

sin η1

cos η2
sin η2

+H1∗Zn−3 cos ξ, (201)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Z ′
1 = − (1 + b∗H1∗)Z1

cos ξ

sin ξ

{
n−2∑
s=1

(−1)s+1Zn−s
cos ηs−1

sin η1 . . . sin ηs−1

}
+

+H1∗Z1 cos ξ, (202)

η′1 = − (1 + b∗H1∗)Zn−2
cos ξ

sin ξ
, (203)

η′2 = (1 + b∗H1∗)Zn−3
cos ξ

sin ξ sin η1
, (204)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

η′n−3 = (−1)n+1 (1 + b∗H1∗)Z2
cos ξ

sin ξ sin η1 . . . sin ηn−4

, (205)

η′n−2 = (−1)n (1 + b∗H1∗)Z1
cos ξ

sin ξ sin η1 . . . sin ηn−3

, (206)

on the tangent bundle

T∗S
n−1{(Zn−1, . . . , Z1; ξ, η1, . . . , ηn−2) ∈ R2(n−1) : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}

(207)
of the (n − 1)-dimensional sphere Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤
π, ηn−2 mod 2π}.

We see that the independent subsystem (198)�(206) of the order 2(n− 1) (due to cyclicity
of the variable ηn−2) can be substituted into the system (198)�(205) of the order 2(n− 1)− 1
and can be considered separately on its own (2n− 3)-dimensional manifold.

In particular, for n = 5 we obtain the following eighth-order system:

ξ′ = (1 + b∗H1∗)Z4 − b∗ sin ξ, (208)

Z ′
4 = − sin ξ cos ξ+
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+(1 + b∗H1∗) (Z
2
1 + Z2

2 + Z2
3)
cos ξ

sin ξ
+H1∗Z4 cos ξ, (209)

Z ′
3 = − (1 + b∗H1∗)Z3Z4

cos ξ

sin ξ
−

− (1 + b∗H1∗) (Z
2
1 + Z2

2)
cos ξ

sin ξ

cos η1
sin η1

+H1∗Z3 cos ξ, (210)

Z ′
2 = − (1 + b∗H1∗)Z2Z4

cos ξ

sin ξ
+ (1 + b∗H1∗)Z2Z3

cos ξ

sin ξ

cos η1
sin η1

+

+(1 + b∗H1∗)Z
2
1

cos ξ

sin ξ

1

sin η1

cos η2
sin η2

+H1∗Z2 cos ξ, (211)

Z ′
1 = − (1 + b∗H1∗)Z1Z4

cos ξ

sin ξ
+ (1 + b∗H1∗)Z1Z3

cos ξ

sin ξ

cos η1
sin η1

−

− (1 + b∗H1∗)Z1Z2
cos ξ

sin ξ

1

sin η1

cos η2
sin η2

+H1∗Z1 cos ξ, (212)

η′1 = − (1 + b∗H1∗)Z3
cos ξ

sin ξ
, (213)

η′2 = (1 + b∗H1∗)Z2
cos ξ

sin ξ sin η1
, (214)

η′3 = − (1 + b∗H1∗)Z1
cos ξ

sin ξ sin η1 sin η2
, (215)

on the tangent bundle

T∗S
4{(Z4, Z3, Z2, Z1; ξ, η1, η2, η3) ∈ R8 : 0 ≤ ξ, η1, η2 ≤ π, η3 mod 2π} (216)

of the four-dimensional sphere S4{(ξ, η1, η2, η3) ∈ R4 : 0 ≤ ξ, η1, η2 ≤ π, η3 mod 2π}.
We see that the independent eighth-order subsystem (208)�(215) (due to cyclicity of the

variable η3) can be substituted into the seventh-order system (208)�(214) and can be considered
separately on its own seven-dimensional manifold.

8.3 Complete list of the �rst integrals for any �nite n

We turn now to the integration of the desired system (198)�(206) of the order 2(n − 1)
(without any simpli�cations, i.e., in the presence of all coe�cients).

Similarly, for the complete integration of system (198)�(206) of the order 2(n−1), in general,
we need 2n− 3 independent �rst integrals. However, after the change of variables

Zn−1

Zn−2

. . .
Z2

Z1

 →


wn−1

wn−2

. . .
w2

w1

 ,

wn−1 = −Zn−1, wn−2 =
√

Z2
1 + . . .+ Z2

n−2, wn−3 =
Z2

Z1

, wn−4 = − Z3√
Z2

1 + Z2
2

, . . . , (217)

w2 = − Zn−3√
Z2

1 + . . .+ Z2
n−4

, w1 = − Zn−2√
Z2

1 + . . .+ Z2
n−3

,
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the system (198)�(206) splits as follows:

ξ′ = −(1 + b∗H1∗)wn−1 − b∗ sin ξ,

w′
n−1 = sin ξ cos ξ − (1 + b∗H1∗)w

2
n−2

cos ξ

sin ξ
+H1∗wn−1 cos ξ,

w′
n−2 = (1 + b∗H1∗)wn−2wn−1

cos ξ

sin ξ
+H1∗wn−2 cos ξ,

 (218)

w′
s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2)

1 + w2
s

ws

cos ηs
sin ηs

,

η′s = ds(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), s = 1, . . . , n− 3,

 (219)

η′n−2 = dn−2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2), (220)

where

d1(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = −(1 + b∗H1∗)Zn−2(wn−1, . . . , w1)
cos ξ

sin ξ
,

d2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = (1 + b∗H1∗)Zn−3(wn−1, . . . , w1)
cos ξ

sin ξ sin η1
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn−2(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) = (−1)n(1 + b∗H1∗)Z1(wn−1, . . . , w1)
cos ξ

sin ξ sin η1 . . . sin ηn−3

,

(221)
in this case

Zk = Zk(wn−1, . . . , w1), k = 1, . . . , n− 2, (222)

are the functions by virtue of change (217).
In particular, for n = 5 we obtain the following eighth-order system:

ξ′ = −(1 + b∗H1∗)w4 − b∗ sin ξ,

w′
4 = sin ξ cos ξ − (1 + b∗H1∗)w

2
3

cos ξ

sin ξ
+H1∗w4 cos ξ,

w′
3 = (1 + b∗H1∗)w3w4

cos ξ

sin ξ
+H1∗w3 cos ξ,

 (223)

w′
2 = d2(w4, w3, w2, w1; ξ, η1, η2, η3)

1 + w2
2

w2

cos η2
sin η2

,

η′2 = d2(w4, w3, w2, w1; ξ, η1, η2, η3),

 (224)

w′
1 = d1(w4, w3, w2, w1; ξ, η1, η2, η3)

1 + w2
1

w1

cos η1
sin η1

,

η′1 = d1(w4, w3, w2, w1; ξ, η1, η2, η3),

 (225)

η′3 = d3(w4, w3, w2, w1; ξ, η1, η2, η3), (226)
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where

d1(w4, w3, w2, w1; ξ, η1, η2, η3) = −Z3(w4, w3, w2, w1)
cos ξ

sin ξ
=

= ∓ w1w3√
1 + w2

1

cos ξ

sin ξ
,

d2(w4, w3, w2, w1; ξ, η1, η2, η3) = Z2(w4, w3, w2, w1)
cos ξ

sin ξ sin η1
=

= ± w2w3√
1 + w2

1

√
1 + w2

2

cos ξ

sin ξ sin η1
,

d3(w4, w3, w2, w1; ξ, η1, η2, η3) = −Z1(w4, w3, w2, w1)
cos ξ

sin ξ sin η1 sin η2
=

= ∓ w3√
1 + w2

1

√
1 + w2

2

cos ξ

sin ξ sin η1 sin η2
,

(227)

in this case
Zk = Zk(w4, w3, w2, w1), k = 1, 2, 3, (228)

are the functions by virtue of change (217).
The system (218)�(220) is studied on the tangent bundle

T∗S
n−1{(wn−1, . . . , w1; ξ, η1, . . . , ηn−2) ∈ R2(n−1) : 0 ≤ ξ, η1, . . . , ηn−3 ≤ π, ηn−2 mod 2π}

(229)
of the (n − 1)-dimensional sphere Sn−1{(ξ, η1, . . . , ηn−2) ∈ Rn−1 : 0 ≤ ξ, η1, . . . , ηn−3 ≤
π, ηn−2 mod 2π}.

In particular, the system (223)�(226) is studied on the tangent bundle

T∗S
4{(w4, w3, w2, w1; ξ, η1, η2, η3) ∈ R8 : 0 ≤ ξ, η1, η2 ≤ π, η3 mod 2π} (230)

of the four-dimensional sphere S4{(ξ, η1, η2, η3) ∈ R4 : 0 ≤ ξ, η1, η2 ≤ π, η3 mod 2π}.
We see that the independent subsystem (218) (which can be considered separately on its

own three-dimensional manifold), n− 3 independent second-order subsystems (219) (after the
change of independent variable) can be substituted into the system (218)�(220) of the order
2(n− 1), and also Eq. (220) on ηn−2 is separated (due to cyclicity of the variable ηn−2).

In particular, we see that the independent third-order subsystem (223) (which can be
considered separately on its own three-dimensional manifold), two independent second-order
subsystems (224), (225) (after the change of independent variable) can be substituted into the
eighth-order system (223)�(225), and also Eq. (226) on η3 is separated (due to cyclicity of the
variable η3).

Thus, for the complete integration of the system (218)�(220), it su�ces to specify two
independent �rst integrals of system (218), one by one �rst integral of systems (219) (all n− 3
pieces), and an additional �rst integral that �attaches� Eq. (220) (i.e., only n).

In particular, for the complete integration of the system (223)�(226), it su�ces to specify
two independent �rst integrals of system (223), one by one �rst integral of systems (224), (225),
and an additional �rst integral that �attaches� Eq. (226) (i.e., only �ve).

First, we compare the third-order system (218) with the nonautonomous second-order
system

dwn−1

dξ
=

sin ξ cos ξ − (1 + b∗H1∗)w
2
n−2 cos ξ/ sin ξ +H1∗wn−1 cos ξ

−(1 + b∗H1∗)wn−1 − b∗ sin ξ
,

dwn−2

dξ
=

(1 + b∗H1∗)wn−2wn−1 cos ξ/ sin ξ +H1∗wn−2 cos ξ

−(1 + b∗H1∗)wn−1 − b∗ sin ξ
.

(231)
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Using the substitution τ = sin ξ, we rewrite system (231) in the algebraic form:

dwn−1

dτ
=

τ − (1 + b∗H1∗)w
2
n−2/τ +H1∗wn−1

−(1 + b∗H1∗)wn−1 − b∗τ
,

dwn−2

dτ
=

(1 + b∗H1∗)wn−2wn−1/τ +H1∗wn−2

−(1 + b∗H1∗)wn−1 − b∗τ
.

(232)

Further, if we introduce the uniform variables by the formulas

wn−1 = u2τ, wn−2 = u1τ, (233)

we reduce system (232) to the following form:

τ
du2

dτ
+ u2 =

1− (1 + b∗H1∗)u
2
1 +H1∗u2

−(1 + b∗H1∗)u2 − b∗
,

τ
du1

dτ
+ u1 =

(1 + b∗H1∗)u1u2 +H1∗u1

−(1 + b∗H1∗)u2 − b∗
,

(234)

which is equivalent to

τ
du2

dτ
=

(1 + b∗H1∗)(u
2
2 − u2

1) + (b∗ +H1∗)u2 + 1

−(1 + b∗H1∗)u2 − b∗
,

τ
du1

dτ
=

2(1 + b∗H1∗)u1u2 + (b∗ +H1∗)u1

−(1 + b∗H1∗)u2 − b∗
.

(235)

We compare the second-order system (235) with the nonautonomous �rst-order equation

du2

du1

=
1− (1 + b∗H1∗)(u

2
1 − u2

2) + (b∗ +H1∗)u2

2(1 + b∗H1∗)u1u2 + (b∗ +H1∗)u1

, (236)

which can be easily reduced to the exact di�erential equation

d

(
(1 + b∗H1∗)(u

2
2 + u2

1) + (b∗ +H1∗)u2 + 1

u1

)
= 0. (237)

Therefore, Eq. (236) has the following �rst integral:

(1 + b∗H1∗)(u
2
2 + u2

1) + (b∗ +H1∗)u2 + 1

u1

= C1 = const, (238)

which in the old variables has the form

Θ1(wn−1, wn−2; ξ) =
(1 + b∗H1∗)(w

2
n−1 + w2

n−2) + (b∗ +H1∗)wn−1 sin ξ + sin2 ξ

wn−2 sin ξ
= C1 = const.

(239)

Remark 8.1. We consider system (218) with variable dissipation with zero mean, which
becomes conservative for b∗ = H1∗:

ξ′ = −(1 + b2∗)wn−1 − b∗ sin ξ,

w′
n−1 = sin ξ cos ξ − (1 + b2∗)w

2
n−2

cos ξ

sin ξ
+ b∗wn−1 cos ξ,

w′
n−2 = (1 + b2∗)wn−2wn−1

cos ξ

sin ξ
+ b∗wn−2 cos ξ.

(240)
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It has two analytical �rst integrals of the form

(1 + b2∗)(w
2
n−1 + w2

n−2) + 2b∗wn−1 sin ξ + sin2 ξ = C∗
1 = const, (241)

wn−2 sin ξ = C∗
2 = const. (242)

It is obvious that the ratio of the �rst integrals (241), (242) is also a �rst integral of system
(240). However, for b∗ ̸= H1∗ both functions

(1 + b∗H1∗)(w
2
n−1 + w2

n−2) + (b∗ +H1∗)wn−1 sin ξ + sin2 ξ (243)

and (242) are not �rst integrals of system (218), but their ratio (i.e., the ratio of the functions
(243) and (242)) is a �rst integral of system (218) for any b∗, H1∗.

Later on, we �nd the obvious form of the additional �rst integral of the third-order system
(218). For this, at the beginning, we transform the invariant relation (238) for u1 ̸= 0 as follows:(

u2 +
b∗ +H1∗

2(1 + b∗H1∗)

)2

+

(
u1 −

C1

2(1 + b∗H1∗)

)2

=
(b∗ −H1∗)

2 + C2
1 − 4

4(1 + b∗H1∗)2
. (244)

We see that the parameters of the given invariant relation must satisfy the condition

(b∗ −H1∗)
2 + C2

1 − 4 ≥ 0, (245)

and the phase space of system (218) is strati�ed into a family of surfaces de�ned by Eq. (244).
Thus, by virtue of relation (238) the �rst equation of system (235) has the form

τ
du2

dτ
=

2(1 + b∗H1∗)u
2
2 + 2(b∗ +H1∗)u2 + 2− C1U1(C1, u2)

−b∗ − (1 + b∗H1∗)u2

, (246)

where

U1(C1, u2) =
1

2(1 + b∗H1∗)
{C1 ± U2(C1, u2)}, (247)

U2(C1, u2) =
√

C2
1 − 4(1 + b∗H1∗)(1 + (b∗ +H1∗)u2 + (1 + b∗H1∗)u2

2),

and the integration constant C1 is chosen from condition (245).
Therefore, the quadrature for the search of an additional �rst integral of system (218) has

the form ∫
dτ

τ
=

=

∫
(−b∗ − (1 + b∗H1∗)u2)du2

2(1 + (b∗ +H1∗)u2 + (1 + b∗H1∗)u2
2)− C1{C1 ± U2(C1, u2)}/(2(1 + b∗H1∗))

. (248)

Obviously, the left-hand side up to an additive constant is equal to

ln | sin ξ|. (249)

If

u2 +
b∗ +H1∗

2(1 + b∗H1∗)
= r1, b21 = (b∗ −H1∗)

2 + C2
1 − 4, (250)

then the right-hand side of Eq. (248) has the form

−1

4

∫
d(b21 − 4(1 + b∗H1∗)r

2
1)

(b21 − 4(1 + b∗H1∗)r21)± C1

√
b21 − 4(1 + b∗H1∗)r21

+
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+(b∗ −H1∗)(1 + b∗H1∗)

∫
dr1

(b21 − 4(1 + b∗H1∗)r21)± C1

√
b21 − 4(1 + b∗H1∗)r21

=

= −1

2
ln

∣∣∣∣∣
√

b21 − 4(1 + b∗H1∗)r21
C1

± 1

∣∣∣∣∣± −b∗ +H1∗

2
I1, (251)

where

I1 =

∫
dr3√

b21 − r23(r3 ± C1)
, r3 =

√
b21 − 4(1 + b∗H1∗)r21. (252)

In the calculation of integral (252), the following three cases are possible.
I. |b∗ −H1∗| > 2.

I1 = − 1

2
√

(b∗ −H1∗)2 − 4
ln

∣∣∣∣∣
√
(b∗ −H1∗)2 − 4 +

√
b21 − r23

r3 ± C1

± C1√
(b∗ −H1∗)2 − 4

∣∣∣∣∣+
+

1

2
√

(b∗ −H1∗)2 − 4
ln

∣∣∣∣∣
√

(b∗ −H1∗)2 − 4−
√

b21 − r23
r3 ± C1

∓ C1√
(b∗ −H1∗)2 − 4

∣∣∣∣∣+ const. (253)

II. |b∗ −H1∗| < 2.

I1 =
1√

4− (b∗ −H1∗)2
arcsin

±C1r3 + b21
b1(r3 ± C1)

+ const. (254)

III. |b∗ −H1∗| = 2.

I1 = ∓
√

b21 − r23
C1(r3 ± C1)

+ const. (255)

When we return to the variable

r1 =
wn−1

sin ξ
+

b∗ +H1∗

2(1 + b∗H1∗)
, (256)

we obtain the �nal form for the value I1:
I. |b∗ −H1∗| > 2.

I1 = − 1

2
√

(b∗ −H1∗)2 − 4
ln

∣∣∣∣∣
√

(b∗ −H1∗)2 − 4± 2(1 + b∗H1∗)r1√
b21 − 4(1 + b∗H1∗)2r21 ± C1

± C1√
(b∗ −H1∗)2 − 4

∣∣∣∣∣+
+

1

2
√

(b∗ −H1∗)2 − 4
ln

∣∣∣∣∣
√

(b∗ −H1∗)2 − 4∓ 2(1 + b∗H1∗)r1√
b21 − 4(1 + b∗H1∗)2r21 ± C1

∓ C1√
(b∗ −H1∗)2 − 4

∣∣∣∣∣+ const.

(257)
II. |b∗ −H1∗| < 2.

I1 =
1√

4− (b∗ −H1∗)2
arcsin

±C1

√
b21 − 4(1 + b∗H1∗)2r21 + b21

b1(
√

b21 − 4(1 + b∗H1∗)2r21 ± C1)
+ const. (258)

III. |b∗ −H1∗| = 2.

I1 = ∓ 2(1 + b∗H1∗)r1

C1(
√

b21 − 4(1 + b∗H1∗)2r21 ± C1)
+ const. (259)

Thus, we have found an additional �rst integral for the third-order system (218), i.e., we
have a complete set of �rst integrals that are transcendental functions of the phase variables.
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Remark 8.2. In the expression of the found �rst integral, we must formally substitute the
left-hand side of the �rst integral (238) instead of C1.

Then the obtained additional �rst integral has the following structure:

Θ2(wn−1, wn−2; ξ) = G

(
sin ξ,

wn−1

sin ξ
,
wn−2

sin ξ

)
= C2 = const. (260)

Thus, we have found two �rst integrals (239), (260) of the independent third-order system
(218). For its complete integrability, it su�ces to �nd one by one �rst integral for the systems
(219) (all n− 3 pieces), and an additional �rst integral that �attaches� Eq. (220).

Indeed, the desired �rst integrals coincide with the previous �rst integrals, precisely:

Θ′′
s+2(ws; ηs) =

√
1 + w2

s

sin ηs
= Cs+2 = const, s = 1, . . . , n− 3, (261)

Θ′′
n(wn−3, wn−4; ηn−4, ηn−3, ηn−2) = ηn−2 ± arctg

Cn−1 cos ηn−3√
C2

n−2 sin
2 ηn−3 − C2

n−1

= Cn = const, (262)

in this case, in the left-hand side of Eq. (262), we must substitute instead of Cn−2, Cn−1 the
�rst integrals (261) for s = n− 4, n− 3.

Theorem 8.2. The system (218)�(220) of the order 2(n − 1) possesses the su�cient number
(n) of the independent �rst integrals (239), (260), (261), (262).

Therefore, in the considered case, the system of dynamical equations (218)�(220) has n
�rst integrals expressing by relations (239), (260), (261), (262), which are the transcendental
functions of its phase variables (in the sense of the complex analysis) and are expressed as a
�nite combination of elementary functions (in this case, we use the expressions (248)�(259)).

Theorem 8.3. Three sets of relations (26), (40), (50) under conditions (31)�(33), (189), (193)
possess n the �rst integrals (the complete set), which are the transcendental function (in the
sense of complex analysis) and are expressed as a �nite combination of elementary functions.
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