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It is well-known that the theory of classical equation of Hamilton—Jacobi has being connected
with the theory of Lagrange and Kolmogorov tori. The solutions of such equations are the
representations of fundemental groups of such manifolds. After that the theory of tori “in
general” is shown. It is known that for the entire symplectic manifold there exists a symplectic
connection such that its covariant derivative with respect to connection is equal to zero.

It is shown that Lagrange tori have a lots of “non-linear” properties with respect to classical
equation of Hamilton—Jacobi but Kolmogorov tori have not such variety with respect to that
equation.

The examples from dynamics of a rigid body interacting with the resisting medium are
presented. Furthermore, a lots of examples from the different areas of natural sciences are

illustrated.
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1 Introduction

Earlier (see [1, 2]), the author already proved the complete integrability of the equations of
a plane-parallel motion of a fixed rigid body—pendulum in a homogeneous flow of a medium
under the jet flow conditions when the system of dynamical equations possesses a first integral,
which is a transcendental (in the sense of the theory of functions of a complex variable, i.e., it
has essential singularities) function of quasi-velocities. It was assumed that the interaction of
the medium with the body is concentrated on a part of the surface of the body that has the
form of a (one-dimensional) plate.

In [2, 3|, the planar problem was generalized to the spatial (three-dimensional) case, where
the system of dynamical equations has a complete set of transcendental first integrals. It was
assumed that the interaction of the homogeneous medium flow with the fixed body (the spherical
pendulum) is concentrated on a part of the body surface that has the form of a planar (two-
dimensional) disk.

Later on (see [3, 4]), the equations of motion of the fixed dynamically symmetric four-
dimensional rigid bodies, where the force field is concentrated on a part of the body surface
that has the form of a (three-dimensional) disk, in this case, the force field is concentrated on
the one-dimensional straight line perpendicular to this disk.

In this activity, the results relate to the case where all interaction of the homogeneous flow of
a medium with the fixed body is concentrated on that part of the surface of the body, which has
the form of a (n — 1)-dimensional disk, and the action of the force is concentrated in a direction
perpendicular to this disk. These results are systematized and are presented in invariant form.



2 Model assumptions

Let consider the homogeneous (n — 1)-dimensional disk D"~! (with the center in the
point D), the hyperplane of which perpendicular to the holder OD in the multi-dimensional
Euclidean space E". The disk is rigidly fixed perpendicular to the tool holder OD located on
the (generalized) spherical hinge O, and it flows about homogeneous fluid flow. In this case,
the body is a physical (generalized spherical) pendulum. The medium flow moves from infinity
with constant velocity v = v, # 0. Assume that the holder does not create a resistance.

We suppose that the total force S of medium flow interaction perpendicular to the disk D"~!,
and point N of application of this force is determined by at least the angle of attack «, which
is made by the velocity vector vp of the point D with respect to the flow and the holder OD;
the total force is also determined by the angles 31, ..., 8,_2, which are made in the hyperplane
of the disk D! (thus, (v, «, B1,. .., B,_2) are the (generalized) spherical coordinates of the tip
of the vector vp), and also the reduced angular velocity tensor
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(1 is the length of the holder, Q is the angular velocity tensor of the pendulum). Such conditions
generalize the model of streamline flow around spatial bodies [4, 5.

The vector oD
determines the orientation of the holder. Then
S = s(a)ve, 2)
where
s(a) = s1(a)sign cos a, (3)

and the resistance coefficient s; > 0 depends only on the angle of attack a. By the axe-
symmetry properties of the body—pendulum with respect to the axis Dxy = OD, the function
s(a) is (formally) even.

Let Dxy ...z, be the coordinate system rigidly attached to the body, herewith, the axis
Dz has a direction vector e, and the axes Duxs, ..., Dz, 1 and Dz, lie in the hyperplane of
the disk D" 1.

By the angles (&,m1,...,7,—2), we define the position of the holder OD in the multi-
dimensional space E™. In this case, the angle ¢ is made by the holder and the direction of
the over-running medium flow. In other words, the angles introduced are the (generalized)
spherical coordinates of the point D of the center of a disk D"~! on the (n — 1)-dimensional
sphere of the constant radius OD.

The space of positions of this (generalized) spherical (physical) pendulum is the (n — 1)-
dimensional sphere

S"il{(ﬁ,m, ey Mn—g) € R : 0<&m,. . g <7, Moo mod 27}, (4)

and its phase space is the tangent bundle of the (n — 1)-dimensional sphere

T*Snil{(év 7717 ce aﬁn72; 5) - -- 7777172) € RQ(nil) :0< 57 M- Mn-3 < Ty -2 mod 27T} (5)

The tensor (of the second-rank) Q of the angular velocity in the coordinate system
Dz ...x,, we define through the skew-symmetric matrix. And so, to be specific, in the case
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n = 5 that matrix has the form

0 —Wip Wy —Wr Wy
w10 0 —Ws We —Ws
Q = —Wo ws 0 —Ws [0%5) N Q € 50(5). (6)
wr —Weg Ws 0 —w1
—Wy W3  —Wa Wi 0

The distance from the center D of the disk D"~! to the center of pressure (the point N)
has the form 0
’rN‘:TN:DN (O&,ﬂl,...,ﬁnz,—), (7)
Up
where
rny = {OaxZNa cee 7$nN}

in system Dz ...x, (we omit the wave over ).

We note, likely in lower-dimensional cases, that the model used to describe the effects
of fluid flow on fixed pendulum is similar to the model constructed for free body and, in
further, takes into account of the rotational derivative of the moment of the forces of medium
influence with respect to the pendulum angular velocity tensor. An analysis of the problem
of the (generalized) spherical (physical) pendulum in a flow will allow to find the qualitative
analogies in the dynamics of partially fixed bodies and free multi-dimensional ones.

3 Some general discourses

3.1 Cases of dynamical symmetries of multi-dimensional rigid body

Let a n-dimensional rigid body © of mass m with smooth (n — 1)-dimensional boundary 0©
be under the influence of a nonconservative force field; this can be interpreted as a motion of
the body in a resisting medium that fills up the multi-dimensional domain of Euclidean space
E".

We assume that the body is dynamically symmetric. In this case, for instance, for the four-
dimensional body, there are two logical possibilities of the representation of its inertia tensor
in the case of existence of fwo independent equations on the principal moments of inertia; i.e.,
either in some coordinate system Dxizox3x4 attached to the body, the operator of inertia has
the form

diag{/y, Is, I>, Is} (8)

(the so called case (1—3)), or the form
diag{[l,[blg,[g} (9)

(the case (2—2)). In the first case, the body is dynamically symmetric in the hyperplane Dxoxgzy
(in other words, Dz is the axis of dynamical symmetry) and, in the second case, the two-
dimensional planes Dxyx and Dzsx, are the planes of dynamical symmetry of the body.

For the five-dimensional body, it could be logically to study the cases of existence of three
independent equations on the principal moments of inertia; i.e., either in some coordinate system
Dzixox3x475 attached to the body, the operator of inertia has the form

diag{li, I5, I>, I5, I>} (10)



(the case (1—4)), or the form
diag{[l,fl,fg,I:;,Lg} (11)

(the case (2—3)). In the first case, the body is dynamically symmetric in the hyperplane
Dzxyxzxyxs (in other words, Dz is the axis of dynamical symmetry) and, in the second case, the
two-dimensional plane Dxix, and three-dimensional plane Dzsx, are the planes of dynamical
symmetry of the body.

Respectively, for the n-dimensional body, it could also be logically to study the cases of
existence of n — 1 independent equations on the principal moments of inertia. In this case, [n/2]
variants of the forms (8), (9) (or (10), (11)) are possible (here, [...] is the integral part). For
instance, for the five-dimensional body, three cases (1—5), (2—4), and (3—3) are possible.

For the case of n-dimensional rigid body, primarily, we shall be interested of the case (1—
(n — 1)), i.e., when, in the certain coordinate system Dz ...z, attached to the body, the
operator of inertia has the form

diag{]l,lg,...7fg}7 (12)
—_———

n—1

precisely, in the hyperplane Dz, ... z,, a body is dynamically symmetric (in other words, Dz
is the axis of dynamical symmetry).

3.2 Dynamics on so(n) and R"

The configuration space of a free, n-dimensional rigid body is the direct product
R” x SO(n) (13)

of the space R"™, which defines the coordinates of the center of mass of the body, and the
rotation group SO(n), which defines the rotations of the body about its center of mass and has
dimension

nn—1) nn+1)

n -+ 5 = 7

Respectively, the dimension of the phase space is equal to

n(n+1).

In particular, if Q is the tensor of angular velocity of a n-dimensional rigid body (it
is a second-rank tensor), Q@ € so(n), then the part of the dynamical equations of motion
corresponding to the Lie algebra so(n) has the following form:

QA + AQ +[Q, QA + AQ] = M, (14)
where
A =diag{\, ..., \u}, (15)
—h+L+...+1, L—L+I+...+1,
)\1 = 5 )\2 = P
2 2
Il+--‘+In—2_In—1+In -[1++In—1_ln
An-1 = ; An = )
2 2
M = My is the natural projection of the moment of external forces F acting on the body in
R™ on the natural coordinates of the Lie algebra so(n) and [.,.] is the commutator in so(n).



The skew-symmetric matrix corresponding to this second-rank tensor Q € so(5) we represent
in the form

0 —wio wy —wr wy
w10 0 —Wws We —Wws3
—Wo ws 0 —Ws W9 3 (16)
w7  —Wg  Ws 0 —-w
—Wyq w3 —W9 w1 0
(see also [5, 6]), where wy, ws, ..., wy are the components of the tensor of angular velocity

corresponding to the projections on the coordinates of the Lie algebra so(5).
In this case, obviously, the following relations hold:

forany¢,7=1,...,n.
For the calculation of the moment of an external force acting on the body, we need to

construct the mapping
R" x R" — so(n), (18)

than maps a pair of vectors
(DN,F) e R" xR" (19)

from R™ x R™ to an element of the Lie algebra so(n), where
DN = {01,02,...,0,}, F={F,F,, ..., F,}, (20)

and F is an external force acting on the body (here, DN is the vector passing through the
origin D of the coordinate system Dz ...z, to the point N of application of the force). For
this end, we construct the following auxiliary matrix

01 02 ... Oy
(F1 F, ... Fn) (21)
All kinds of second-order minors with the sign (and they are exactly n(n — 1)/2 pieces
n(n —1)/2) of this auxiliary matrix are the coordinates of the moment (DN, F) of the force F,
and this moment currently identified with an element of the Lie algebra so(n).
Since the ordering the coordinates wy, wo, ..., wy, f = 1,...,n(n — 1)/2, has been
introduced on the Lie algebra so(n), then we also introduce the same ordering for the calculating

of the moment Mp = (DN, F) of the force F. Indeed, the first set G; of coordinates of the
desired moment consists of n — 1 alternating minors

67171 5n 5n72 571 57173 5n n 61 5n
*’Fnl F, ’_'FM F, ’*'an E |V R R
The second set G of coordinates consists of n — 2 alternating minors
571—2 571—1 571—3 5n—1 671—4 5n—1 n+1 51 6n—1
+‘ Foz P ’_' Fus For |" V| Fos B |V | R ORL

Continuing, the final set G,,_; of coordinates consists of one minor

o1 02
o F

i

As seen, the first minors in any set begin from the sign “+”.
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The resulting ordered set from n(n—1)/2 values, we call the coordinates of moment (DN, F)
of the force F.

Dynamical systems studied in the following sections, generally speaking, are not
conservative; they are dynamical systems with variable dissipation with zero mean (see [7, 8]).
We need to examine by direct methods a part of the main system of dynamical equations,
namely, the Newton equation, which plays the role of the equation of motion of the center of
mass, i.e., the part of the dynamical equations corresponding to the space R™:

mwe = F, (22)

where w¢ is the acceleration of the center of mass C' of the body and m is its mass. Moreover,
due to the higher-dimensional Rivals formula (in this case, it can be obtained by the operator
method not difficultly) we have the following relations:

wo =wp +Q’DC + EDC, wp = vp + Qvp, E=Q, (23)

where wp is the acceleration of the point D, F is the external force acting on the body, and E
is the tensor of angular acceleration (second-rank tensor).

If the position of a body © in the Euclidean space E™ is determined by the functions which
are the cyclic in the following sense, i.e., the generalized force F and its moment Mp = (DN, F)
depend on the generalized velocities only (quasi-velocities) and do not depend on the position
of a body in the space, then the system of equations (14) and (22) on the manifold R™ x so(n)
is a closed system of dynamical equations of the motion of a free multi-dimensional rigid body
under the action of an external force F. This system has been separated from the kinematic
part of the equations of motion on the manifold (13) and can be examined independently.

In particular, the right-hand side of the system (14) for n = 5 has the form

M ={M;, My, ..., My} =

= {54F5 - 65F4a 55F3 - 53F57 52F5 - 55F27 55F1 - 51F157 53F4 - 64F37
04Fy — 09 Fy, 01 Fy — 04F1, 0o F5 — 03F5, 63F) — 01F5, 01 F5 — 021 },

where My, M, ..., My are the components of the tensor of moment of the external forces in
the projections on the coordinates in the Lie algebra so(5),

(24)

0 My My —M;, M,

M=| My My 0 M M |. (25)
M, —Ms M;s 0 — M,
-M, Ms; =My, M 0



4 Set of dynamical equations in Lie algebra so(n)

In our case of a fixed pendulum, the case (12) is realized. Then the dynamical part of the
equations of the motion corresponding to the Lie algebra so(n), has the following form:

(n — 2) Ly, + (=1)"T (L — LYW,_1(Q) = (=1)"z,n (a, Biy- s Baa, %) s(a)v?,

26
(n = 2) Iy, + (=1)"(Iy = L)Wn2(Q) = (=1)" "y v (a,ﬁl, ey Bna, %) s(a)v?, 20

(Il + (n - 3)]—2)&}7‘”,_271 = 07

. Q
(n - 2)[2wrn—2 + (Il - 12)W2<Q) = —X3N (CY, 517 s aﬁn—?a ;) 8(@)’027
. Q 9
(n —2) 10wy, , + (I = I)Wi(Q) = zon | @, B1, . .., Bua, " s(a)v?,
where 7, o + 1 = r,_1, and the functions W;(2), t = 1,...,n — 1, are the quadratic forms on
the components wy, ..., wys, f =n(n —1)/2, of tensor €, herewith,

Wi Q) om0 =0, s = (0= 1)(n—2)/2, ky#715y j=1,...08, i=1,...n—1 (27)
Let us explain the formula (27). The tensor € € so(n) has
f=n(n—1)/2

components totally. Respectively, the moment of the forces Mr = (DN,F) has as many
components. Since the auxiliary matrix (21) has the following form

(o, 3 28)
in the right-hand side of the system (26)
s=(m-=1)(n—-2)/2
equations contain the identical zero. We denote the numbers of those equations as follows:
ki, ..., ks.

In this case, the corresponding components wy;,7 = 1,...,s, of the tensor  of the angular
velocity, we call the cyclic.



The rest of the numbers of equations in which the following values with the sign

Q
TIN (Oév/@la s 7ﬁn—27 E) S(OZ)U2, [ = 27 - n,

present, we denote through

"y Tn—1,
since
fos= n(n —1) B (n—1)(n—2) 1
2 2
Obviously that
for any t = 1,...,n — 1, i.e., the quadratic forms W,;({2) are equal to zero identically, when all

the components of the tensor  are equal to zero. In this case, the formula (27) means that for
the vanishing of quadratic forms W;(Q2), t = 1,...,n — 1, to zero, it is sufficient that all the
cyclic components of the tensor 2 could be zero.

In particular, in the case n = 5 this system has the from:

(I + 215)un
(]1 + 2]2)(,02
([1 -+ 2[2)(,03

0,
0,
0,

Q
310wy + (11 — L) (wswip + wawy + wiwr) = —Tsy (047 B, B2, Bs, ;) 5(04)'027

([1 + 2[2)&)5
([1 + 2]2)0)() =

Q 2
+ (Lo — 1) (wiwy — wewro — Wswg) = TN | @, P1, Ba, P, o s(a)v”,
([1 + 2]2)(,08 =

Q
3Lowg + (I — 1) (wswig — Wswr — Wawy) = —T3n (04, B1, B2, Bs, ;) s(a)v?,

(29)
31567 +

) Q
3Lt + (Lo — Ih) (wswy + wewr + wawy) = Tan <Oé, B, B2, B3, 5) s(a)v?,

since the moment of the medium interaction force for n = 5 is determined through the following
auxiliary matrix:

0 ToN XT3N T4N  T5N
(—s(a)v% 0 0 0 0 )’ (30)

where
{—S(&)UzD,()?O,O’O}
is the decomposition of the force S of the medium interaction in the coordinate system

Dzixox3x47s. In this case,
rn=4, ro="7 1r3=9, ry = 10.

Since the dimension of the Lie algebra so(n) is equal to f = n(n — 1)/2, the system of
equations (26) represents the set of the dynamical equations on so(n).

We see, that in the right-hand side of Eq. (26), first of all, it includes the angles
a, B, ..., Bn_a, therefore, this system of equations is not closed. In order to obtain a complete
system of equations of motion of the pendulum, it is necessary to attach several sets of kinematic
equations to the dynamic equations on the Lie algebra so(n).
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4.1 Cyclic first integrals

We immediately note that the system (26) obtained from (14), by the existing dynamic

symmetry
Ih=...=1,, (31)

possesses s = (n — 1)(n — 2)/2 cyclic first integrals

Wk, = wy, = const, ..., wy, = wj, = const, s= (n = 1)2(n — 2). (32)
In this case, further, we consider the dynamics of our system at zero levels:
wy, = ... =wp =0. (33)
In particular, the system (29) possesses the first integrals
W =W, we =wd, wy=wl, ws =wl, we=wl, wg =y, (34)
which are considered at zero levels:
W=w)=w)=wd=wl=wd=0. (35)
The nonzero components w;,, . .. ,w,, of the tensor €2, it has p = f —s = n — 1 pieces (here
T1,...,7, the rest p of numbers from the set Q1 = {1,2,...,n(n — 1)/2}, which are not equal

to kl,...,k}s).
Under conditions (31)—(33) the system (26) has the form of unclosed system of n — 1
equations:

(n —2)lw,, = (=1)"TuN (04, By Bn2, %) s(a)v?,

. Q
(n - 2)]2(*}7’7172 = —I3N ((I, 617 s aﬁn—Qa ;) S(CY)U2,

) Q
(TL - 2)]2w7‘n_1 = TaN (OZ, 517 s 7B’n—2a ;) S(CY)UQ.

In particular, under conditions (34)—(35) the system (29) has the form of unclosed system
of four equations:

. Q
3wy = —x58 (04,51,52,53, ;) s(a)v?,
. Q 2
3IZC“-)7 = Ty4nN | &, 617B27ﬁ37 ; s(a)v )
/ (7
3[2(,2)9 = —I3N <Oé, 617 627 637 ;) 5(06)’02,

) Q
3]2("}10 = TaN (Oé, 617 627 637 ;) S(Q)U2‘



5 First set of kinematic equations

In order to obtain a complete system of equations of motion, it needs the set of kinematic
equations which relate the velocities of the point D (i.e., the center of the disk D"~ ') and the
over-running medium flow:

)
. ~ 0 .
vp =vp - iy(a, fr,. .., Bnz) = : + (—Voo )i (=&, M1y -+ o s M2), (38)
0
where
CoS o
sin «v cos By

sin o sin 31 cos By

iv<057 617 cee 7Bn—2> - (39)

sinasin By ... sin 3,3 cos 3,2
sinasin By .. .sin 3,9

The equation (38) expresses the theorem of addition of velocities in projections on the
related coordinate system Dxq ... x,.

Indeed, the left-hand side of Eq. (38) is the velocity of the point D of the pendulum with
respect to the flow in the projections on the related with the pendulum coordinate system
Dz ... x,. Herewith, the vector i,(c, 51, ..., Bn,—2) is the unit vector along the axis of the vector
vp. The vector i,(«, B, . . ., Bn—2) has the (generalized) spherical coordinates (1, «, 51, .. ., Bn_2)
which determines the decomposition (39).

The right-hand side of the Eq. (38) is the sum of the velocities of the point D when you
rotate the pendulum (the first term), and the motion of the flow (the second term). In this
case, in the first term, we have the coordinates of the vector Bekropa OD = {[,0,...,0} in the
coordinate system Dz ... x,.

We explain the second term of the right-hand side of Eq. (38) in more detail. We have in it the
coordinates of the vector (—vy) = {—0w0,0,...,0} in the immovable space. In order to describe
it in the projections on the related coordinate system Dx; ... x,, we need to make a (reverse)
rotation of the pendulum at the angle (—¢) that is algebraically equivalent to multiplying the
value (—v4) on the vector i,(—&, M1, ..., Mp_2).

Thus, the first set of kinematic equations (38) has the following form in our case:

Vp COS X = —Vy, COS &,

vpsinacos 1 = lw,,, | + Vs Sin € cos ny,

vp sinacsin By cos By = —lw,,_, + Voo sin € sinny cos s, (40)
vpsinasin B ... sin B,_5c0s Bu_g = (—1)"w,, + vs sin€sinmg, . .. sinn,_3 cosn,_a,
vpsinasin fy ...sinG,_o = (—1)"lw,, + Voo sinésinn, . ..sinn, .
In particular, in the case n = 5 this set of equations has the form:

Up COS Q¥ = —Ws COS E,

vp sin a cos B = lwig + Vs SN & cOS Ny,

vp sin acsin 51 cos o = —lwg + Vs Sin & sin 17 cos 7, (41)

vp sin asin £y sin By cos B3 = lwr + Vs sin & sin 7y sin 1, cos 13,

vp sin asin [y sin [y sin 83 = —lwy + Vs sin & sin 1y sin 7y sin n3.
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6 Second set of kinematic equations

We also need a set of kinematic equations which relate the angular velocity tensor Q and
coordinates &, 17y, ... s n-2,&,M1, - -+, 2 of the phase space (5) of pendulum studied, i.e., the
tangent bundle T,S"{&, M1, ..., M—2;&, My« M2}

We draw the reasoning style allowing arbitrary dimension. The desired equations are
obtained from the following two sets of relations. Since the motion of the body takes place
in a Euclidean space E™ formally, at the beginning, we express the tuple consisting of a phase
variables wy,, Wy, ...,w,. _,, through new variable zi,..., 2, 1 (from the tuple z). For this, we
draw the following turns by the angles ny, ..., 7,_2:

Wy 21
Wiy Z9
= T1,2<77n72) ° T2,3(77n73> ©...0 Tn72,n71(771) ) (42)
Wr,_1 Zn—1
where the matrix T ,1+1(n), K =1,...,n — 2, is obtained from the unit one by the existence of

the second-order minor Mj, j41:

1 0 0 0 0
0 0 0 0
Tipgr1=1 0 0 Mg 0 0 |, (43)
0 0 0 0
0 0 0 0 1
M _ ( M k Mk k41 ) _ _ _ o
kk+1 — y Mk = M1 k1 = COST), M1k = — M k1 = SHLT).
M1k MEk+1,k4+1
In other words, the following relations hold:
21 Wry
z Wy
2 =Thon-1(—m) o Thgn-2(—m2)0...0T12(—Nn_2) ? (44)
Zn—1 wrn71

In particular, for n = 5 the values wy, w7, wy, wyp are transformed through the composition
of the following three turns:

W4q 21
wr . )
w = T1,2(773) © T2,3(772) © T3,4(7]1) ) (45)
9 <3
W10 24
where
10 O 0
01 0 0
Tsa(n) = 0 0 cosp —sinn |’
0 0 sinnp cosny
1 0 0 0
| 0 cosp —sinnp O
Toa(n) = 0 sinp cosy O |’
0 0 0 1
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cosn —sinnp 0 0

sin cosp 0 0

T1,2 (77) = 0 7 0 1 0
0 0 01

In other words, the following relations hold:

Z1 Wy
22 _ wr
= T34(—m) 0 T23(—n2) 0 Th 2(—n3) ; (46)
zZ3 Wy
Z4 %)

ie.,
Z1 = Wy COS M3 + Wy SIN N3,

2o = (wr COS M3 — Wy SINN3) COS Ny + Wy SIN 72,

: : . (47)
23 = [(—wr cos M3 + wy sinns) sin g + wg cOS 1] cOS 1y + w1 SIn 7,
24 = [(wr cosms — wysinmng) sinne — wg €os 1] sinny + wig cosn;.
Then we substitute the following relations instead of the variables z:
fn—1 = éa
. siné
Zp—2 = — s
2 m -
. siné |
Zn—3 = 12 S 7)1,
cos & (48)
Z9 = ( 1)n+177n—3 sin & sinmy ... sinn, 4,
0sé&
n. siné | _
21 = (=1)"y_o——=sinn; ...sinn,_3.
cos &
In particular, for n = 5 we have the following formula:
R4 = éu
. siné
23 = —I——
3 m cos€’
_siné | (49)
z22 =12 S 7)1,
cos &
. siné . )
21 = 13 SII 7)1 SIN1 7)o.

COS

Thus, two sets of Eqs. (42) and (48) give the second set of kinematic equations:

Wy
Wy

wrn—l

= T1,2(77n72) © T2,3(T]n73) 0...0
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(—1)"7n—2 228 sinmy .. sin g

(—1)"+1ﬁn—322§sh1n1...snlnn_4

T T oyl EEXERTETERRIERY .
T3 n—2(n2)Tn—2n-1(m) o iﬁli sin 7, (50)
g
3
In particular, for n = 5 we have:
;. . ) . siné ) .
Wy = —5 S 7)1 SINL7) SN 73 — 1)1 COS 7)1 SIN 7)o SIN T)3—
COS
. siné | ) . siné | )
— Tjg sin 7y cos Mg sin s — 7j3 sin 7 sin 7y cos N3,
cos & cos &
. . . sin§ .
wy = £ sinny sinny cos N3 + 17y €OS 7)1 Sin 1) COS N3+
cos
. . (51)
. siné | . siné | . .
+ 12 sin 1, cos 13 COS N3 — 1j3 sin 1, sin 7, sin 73,
cos & coS
- . siné . siné | .
wg = —&sinn cosny — 1y COS 7)1 COS 7)o + 7)o sin 7y sin 7y,
cosé cos &
. .siné .
wig = & Cos — 11 SIL 7).
cosé

We see that three sets of the relations (36), (40) and (50) form the closed system of equations.
These three sets of equations include the following functions:

ToN (aaﬁlu'”wﬁn—%%) y +++y InN <a7/817"'76n—27%>7 S(Oé). (52)

In this case, the function s is considered to be dependent only on «, and the functions
ZToN, ..., T,y May depend on, along with the angles o, (1, ..., 05,2, generally speaking, the
reduced angular velocity tensor I2/vp.

7 Case where the moment of nonconservative forces is
independent of the angular velocity

We take the function ry as follows (the disk D"~ is given by the equation z1y = 0):

0
rv=| | = R@)in, (53)
o
where
iy =i, (g,ﬁl, . ,5n_2> (54)
(see (39)).
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In our case

0

cos 3y
sin (31 cos [y

sin By . ..sin 8,3 cos B, _9
sin 51 ...sin Bn—Q

Thus, the equalities

oy = R(a) cos By, xsy = R(«a)sin By cos B, ...,

56
Tpo1ny = R(a)sinfy .. .sin fB,_5co8 B2, Ty = R(a)sinfy .. .sin 5, o, (56)

hold and show that for the considered system, the moment of the nonconservative forces is

independent of the angular velocity tensor (it depends only on the angles o, (1, . .., B,_2).
And so, for the construction of the force field, we use the pair of dynamical functions

R(a), s(a); the information about them is of a qualitative nature. Similarly to the choice of

the Chaplygin analytical functions (see [9, 10]), we take the dynamical functions s and R as
follows:

R(a) = Asina, s(a) = Beosa, A, B > 0. (57)

7.1 Reduced systems

Theorem 7.1. The simultaneous equations (26), (40), (50) under conditions (31)-(33), (53),
(57) can be reduced to the dynamical system on the tangent bundle (5) of the (n—1)-dimensional
sphere (4).

Indeed, if we introduce the dimensionless parameter and the differentiation by the formulas

AB

b, = Ing, ny = ————
o, Ny (n_2>[27

< >= NUs <>, (58)
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then the obtained equations have the following form:

£+ b, cos€ + sin€ cos E—

— [0 + 0 sin® my + nf sin® gy sin® g + ... 4 g2y sin® .. sin® ] =0,

1 + cos? 5

b* !/
1+ bty cos &+ £ Ycos€siné

- [?752 + 77? sin? Ny + 77:12 sin? M2 sin? N3+ ...+ 773_2 sin? Ny... sin? nn_3} sinn; cosmy = 0,

1+ cos?&
b* !, !
2 + bty c0s &+ £, % cos&sin &
cos
+ 2]
sin n
— [7752 + nF sin®n3 + ngz sin?ngsin®n, 4 ... + 777'12_2 sin?7s . . . sin? 7’]”_3} sin 7, cosny = 0,
1+ cos?¢
b* )
3+ b cos &+ £y 3 cos&sin é
cos COS N
2 2 /! _
+ 771773 MMl o 7

— [nf + 5 sin2 s + 1 sin® pysin® ns + ...+ 02 ysin’ny .. .sin® g, 5] sinmz cosnz =0,  (59)

1+ cos? ¢
b, cosé + _—
77n 4+ 77n4 § 577n 4C08§S1n§
COS 1y —
2 20 D
sin sin”,_s
- [77;1273 + 77n72 sin” 77n73} SIN 7,4 COSNp—g = 0,
1+ cos®&
Vi
+ b, cosé + _—
Mn—3 - E+E&m, 3cos§sm£
0S7Th COSTn—4

+ 277177:1 3 sin +...+ 277;—477;—3

i 7,4
— 0/ ,sinn,_3cosn,_3 =0,

1+ cos?&
! b, cOS -
Mo 4 by _gcos& + &, 2 cosEsin g

COS My, —
o5 + ...+ 277;1_377;_2# = 0, b* > 0.
| Sin 7,3

2/ /
+ 20 My 28111

In particular, for n = 5 we have:

&+ b.& cos€ +sinécosé — [ + ny sin® iy + 05 sin® iy sin® 1) SH;E =0,

1

1+ b cos €+ &) 'ﬂ [ §2 + n§2 sin? ng} sinn; cosmy = 0,
Ycos€sin é (60)
1

y + bury cos &+ &' Lt cos' ity ot — 2 sin gy cos = 0,
2cosEsiné sin 7y
1

5 + beny cos € + &'y 'ng 2 néw—anénggC?Snz =0, b, > 0.
% cos Esin é sin 7y sin 1,

After the transition from the variables z (about the variables z see (48)) to the intermediate
dimensionless variables w

2 = NoUsoZiy k=1,...,n — 2, Zp_1 = NoUsoLpn_1 — NoUsobs SINE, (61)
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system (59) is equivalent to the system

& =27,_1—b,siné, (62)
Z! | =—sinfcosé+ (Z7 +...+ ZEHZ)C.O—Sg, (63)

sin &

cos& cos & cosmy

Z = —TpoZpy 11— (2} ...+ 22 64
n—2 2 lsin§ (Zit.+ ”_S)Sinﬁ sinn; (64)

Z7/L—3 - _Zn—3Zn—1C.OS£ + Zn—3Zn—2 C.OS€C?S n

sin & sin & sin

1 cosny
R Rl 65
A+ "_4>sin£ sinny sinmny’ (65)
Z/ A COSf nzf(_l)s—i—lz COST)s—1 (66)
! Ysin ¢ — "sinmy .. sinne_y [
cos &
! - _Zn_ =) 67
771 2 Sinf ( )
cos &
=2y g———— 68
& 3simﬁsinm7 (68)
= (=) cos ¢ 69
s = (=1) *sinésinmy ...sinmn_y’ (69)
n cos§

77;—2 =(-1)"Z (70)

1= . . ;
sinésinny ...sinn,_3

on the tangent bundle
T*Sn_l{(Zn—la cet Zl; 57 .- - 777n—2) € R2(n—1) : 0 S 57 My« Mn-3 S Ty Mhn—2 mod 27T} (71)

of the (n — 1)-dimensional sphere S"1{(&,ny,...,mn2) € R*™ : 0 < &,z <
T, M2 mod 27}.

We see that the independent subsystem (62)—(69) of the order 2(n —1) — 1 (due to cyclicity
of the variable 7, _5) can be substituted into the system (62)—(70) of the order 2(n—1) and can
be considered separately on its own (2n — 3)-dimensional manifold.

In particular, for n = 5 we obtain the following eighth-order system:

& =27,—b,sin¢, (72)
ZZ’L:—sinfcos§+(ZIQ+ZQQ+Z§)C.OS£, (73)
sin &
cos ¢ cos§ cos
Zy = —Zs 7 —(Z2+ 72 74
2y = 2,258 | 7,7,S58 O | ppcosE 1 cosip (75)
sin & sin & sin sin & sinn; sin 7y
1
7= 22,558 4 7,7,588C8M 5 5 €058 1 cosiy (76)
iné sin & sin sin & sinn; sinn,
cos &
773 = —23&7 (77)
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cos &

b= Jo—— 78
T2 sin&sinn’ (78)
cos &
s=—2 79
s "sin & sinny sing,’ (79)
on the tangent bundle
T*S4{(Z47 Z37 Z27 21357771777277737) € R8 : 0 S 577717772 S ™ M3 mod 277} (80)

of the four-dimensional sphere S*{(&,m1,m2,m3) € R*: 0 < & 1, 1m0 < 7, 13 mod 27},

We see that the independent seventh-order subsystem (72)—(78) (due to cyclicity of the
variable 73) can be substituted into the eighth-order system (72)—(79) and can be considered
separately on its own seven-dimensional manifold.

7.2 General remarks on integrability of system for any finite n

As already mentioned, in order to integrate completely the system (62)—(70) of the order
2(n — 1), we have to obtain, generally speaking, 2n — 3 independent first integrals. But the
systems considered have such symmetries that allow to reduce a sufficient number of the first
integrals down to n, in order to integrate the system.

7.2.1 The system under the absence of a force field

Let study the system (62)-(70) on the tangent bundle T,S" {Z, 1,..., Z1;&,01, ., Du_2}
of the (n — 1)-dimensional sphere S"~1{& ny,...,m,_2}. At the same time, we get out of this
system the conservative one. Furthermore, we assume that the function (81) is identically equal
to zero (in particular, b, = 0, and also the coefficient sin £ cos ¢ in Eq. (63) is absent):

Fv (067/61,. .. 7671—27 %) - |I'N| - (rNaiN(/Blw .. 7611—2)) -

T - O\ .
= 0-cos E + ;'ISN <Oé, 617 s 7Bn—27 E) ZSN(/BD s 7677,—2) = 0. (81)
Here isn (51,3 Pn2), s = 1,...,n, (izn(B1,...,Pn_2) = 0) are the components of the
unit vector on the axis of the vector ry = {0, 2oy, ..., 2,5} on (n — 2)-dimensional sphere
S"2{B4,...,Bn_2}, defining the equation o = 7/2 as the equatorial section of corresponding

(n — 1)-dimensional sphere S" {a, 31,. .., Bn_2}.
The system studied has the form

5/ = anlu (82)
7 = (2t 472 ) s 83
n—1 ( 1 + + n—2) Sil’lgj ( )
cos & cos & cos
Z =Ty T —— — (22 .+ 72 ) 4
Z7/1—3 - = n—SZn—IC?)S5 + Zn—BZn—Q C.OSSCT)S n
sin & sin & sin
CoS 1 cos
22 72 ) E e (85)

sin € sinny sinn,’
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n—2
cos & COS M)s—1
70 =—7 —1 S+1Zn_5 86
1 1sin£ {SZ( ) sinmy .. .sinn, 1}7 (86)

cos&
(g o088 87
h sin’ 0
cos&

R 88
2 ®sin Esinm )
;e cos& 89
Nh—3 ( ) 2 sin f sin m... sin Nn—4 ’ ( )

. cos&
Moy = (—1)'Z 50

17 - - .
sinésinn; ...sinn, 3

The system (82)—(90) describes the motion of a rigid body in the absence of an external
force field.

Theorem 7.2. System (82)-(90) has n analytical independent first integrals as follows:

Q1 Znors o 25 Emn, M) =24+ B2y = Cr = const, (91)

By (Zn 1oy 206 ey ) = \/Zf Yo+ 272 ,sing = Cy = const, (92)

D3(Zn 1y s 2056, My e ey Mp2) = \/le +...+ Z2 gsinésinn = C3 = const, (93)

D oLty s 2156, M, Mue) = A\ Z2 + Z2sinsinny, .. .sinn,_4 = C,_o = const, (94)
S, 1 (Zn1y s Z05,E,M, o o) = Zysinésinm, ...sinn,_3 = C,,_1 = const, (95)
D, (Zn1, s Z1:6, M,y -« Mu2) = Cy, = const. (96)

These first integrals (91)—(95) states that as the external force field is not present, it is
preserved (in general, nonzero) n — 1 components of the angular velocity tensor of a (“n-
dimensional”) rigid body, precisely

— 0 _ -0 _
Wy, =Wy =const, ..., W, , =w, = const. (97)

In particular, the existence of the first integral (91) is explained by the equation

1

2,,2
NV

24+ ..+ 72 = 2 +...+w: ]=C} = const. (98)

[wr,

The first integral (96) has the kinematic sense, “attaches” the equation on 7,_» and can be
found from the following quadrature:

dnan o Zl 1

S —— 99
d77n73 Z2 sin n—3 7 ( )

in this case, if we use the levels of the first integrals (94), (95) and obtain the equality
7 = j:\/q%_1 sin“n,_3 — 1, (100)
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then the quadrature (99) has the form

d
Nn—2 = :I:/ ¢ , U = COSNp_3. (101)
(1 _ u2) (03—2 _ 1) _ 0372’11,2
Cr_y Cr_y

The calculation of its quadrature implies to the following form:

COS N3

Mo + C,, = Farctg , C,, = const, (102)

Cry o2
02_1 SIm” Np—3 — 1

n

that allows to obtain the first integral (96). Transforming the last equality, we have the following
invariant relation:

Cr
(0272 - 072171>tg277n73 - 072171'

tg* (12 + Cn) = (103)
Now we rephrase the Theorem 7.2.
Theorem 7.3. System (82)—(90) possesses n independent first integrals of the following form:

i+ 47

U (Zp_t1,. s 21600, .. Qo) = — = = (] = const, 104
1 1 1&m Nn—2) o, \/Zf+...+Z,%72sin§ 1 (104)
\I]2<Zn,1, ey Z1§€7771, Ce 777n72) = Cé = COTLSt, (105)
O, o JIP+ 72
Ua(Zp1yoo s 216, ey Dpn) = = , = (% = const, 106
3(Zn-1 1;€,m Th—2) B, Zysinnm s O3 (106)
P 2+ .. .+ 72
\Ijan(anla ceey Zl;ganla c. ,7”]”,2) = 33 = \é ! > _3 = C7I1—2 = const, (107)
4 \/Z1+...+Zn_4sm772
) Zi+ ...+ 72
Uy 1 (Znty o s 2156, My vy Mnea) = (}TQ = \g L > 2 — (' | = const, (108)
3 Zi+.. . +Z2_gsinm
U, (Znt1y oy Z056M1, -+ n—2) = C), = const. (109)

The first integral (109) has also the kinematic sense and “attaches” the equation on 7, s,
and the functions Wy, ¥, can be selected equal to &4, ®,,, respectively.

In the formulation of the Theorem 7.3 (unlike Theorem 7.2), the characteristics of smooth
of the first integrals is absent. Precisely, where the denominators (or the numerators and
denominators simultaneously) of the first integrals (104)—(109) are equal to zero, the integrals
considered, as functions, are the singularities. Furthermore, its are not often, generally speaking,
even the continuous functions.

By Theorem 7.3, the transformed set of the first integrals (104)—(109) of the system (82)-
(90) (i.e., the system under the absence of a force field) still remains as the set of the first
integrals of the system studied.

For the complete integration of system (82)—(90) of the order 2(n — 1), in general, we need
2n — 3 independent first integrals. However, after the following change of variables

Zn—l Wp—1
Zn—2 Wn—2
—> Y
Zo wa
A w1y
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Z Z
7?, Wpg = ————ooe ... (110)

NG EY7A
Zn73 Zn72

- , W1 = — )
VZET .+ 22,  JZPt. + 22,
the system (82)—(90) splits as follows:

— — 2 2 —
Wp—1 = _anla Wp—2 = \/Z1 +...+ Zn_za Wp—3 =

Wo =

glz_wn—la
w2 GOS8
n—1 ”_2sin§’ (111)
W —w o G058
n—2 n—2Wn—1 sinf’
1+ w? cosn
w/:ds Wp—1y .-, W15G, sty n— > . sv
s ( ! 56 "in-2) ws  sinmg (112)
n=ds(wp_1,. .., w;5EM, . a), S=1,...,n—3,
77;_2:dn,g(wn,l,...,wl;f,m,...,nn,g), (113)
where
i ¢ ) = —Zu sl jooss
Wp—15 -+, W15 G, s ln— = —4p-2Wn-1,...,W : )
1 1 1,6, T Mn—2 2 1 1 Siné
cosé
do(Wp_1,. -, W&, M1, -+, M) = Zp_s(Wp_1,..., W) —F——,
2( 1 1;6,m Nn—2) 3( 1 1)sm§smm (114)

cos &

dn— n—1y---> 1S sy ln— = _17lZ n—Ls---> . . . ’
2(Wn-1 wis &, Mn-2) = (=1)"Z1(wn— wl)sm{'smm...smnn_g
in our case
Zy = Zi(Wp—1,...,wy), k=1,...,n— 2, (115)

are the functions, by virtue of change (110).
The system (111)-(113) is studied on the tangent bundle

T8 H(wWn 1, Wi &M, ng) € RZD 0 <€y, ... Nps <7, o mod 27}
(116)
of the (n — 1)-dimensional sphere S" '{(&,ny,...,mn2) € R*™ : 0 < &,z <
T, Nn—o mod 27}.

We see that the independent third-order subsystem (111) (which can be considered
separately on its own three-dimensional manifold), n — 3 independent second-order subsystems
(112) (after the change of independent variable) can be substituted into the system (111)—(113)
of the order 3+2(n—3)+1 = 2(n—1), and also Eq. (113) on 7,,_ is separated (due to cyclicity
of the variable 1, _»).

Thus, for the complete integration of the system (111)-(113), it suffices to specify two
independent first integrals of system (111), one by one first integral of systems (112) (all n — 3
pieces), and an additional first integral that “attaches” Eq. (113) (i.e., only n).

Remark 7.1. We write the first integrals (104)-(109) in the variables wy, ..., w,_1 by virtue
of (110). We have:

2 2
Wy _o +w; _
O1(Wp_1, .-, w1 &M,y o) = —n=2 @ n-l = CY = const, (117)

Wy _9 SN E
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Oo(Wn—1y -, W15, M5 -y M) = Wy_osiné = Cy = const, (118)

V1+w?
~—==C/,=const, s=1,...,n—3, (119)

@s+2(wn—1a"'>w1;§77717"'777n—2): .
sin 7,

On(wWp_1,. .., w1;E, M, ., Mu2) = C = const. (120)

Thus, two independent first integrals (117), (118) are sufficient to integrate the system (111),
the first integrals (119) (all n — 3 pieces) are sufficient to integrate the independent first-order
equations

dws 1+ w? COS 1)

—1,....n—3, 121
dns wy  sinn,’ s ’ " (121)

that are equivalent to the systems (112) after the change of independent variable, and, finally,
the first integral (120) is sufficient “to attach” Eq. (113). We have proved the following Theorem.

Theorem 7.4. The system (82)-(90) of the order 2(n — 1) possesses the sufficient number (n)
of the independent first integrals.

7.2.2 The system under the presence of a conservative force field

Now let us study the system (62)—(70) under assumption b, = 0. In this case, we obtain the
conservative system. Precisely, the coefficient sin € cos € in Eq. (63) (unlike the system (82)—(90))
characterizes the presence of the force field. The system studied has the form

§'= 27y, (122)
7 | =—sinfcos&+ (ZF+...+ Zi_Q)C‘O—SS, (123)
sin &
cosé cos & cos 1y
7z Y/ 72+ 7z 124
ne2 2 lein g — Gt Z) siné sinn,’ (124)
Z;,g g T 10055 N ud 2cosfcosnl
sin & sin & sin
1 cosns
72 72 )58 125
i+ 42 sin & sinn; sinny’ (125)
cos & 3 cos
7 = —Z,— { (—1)**'Z,_— et } : (126)
sin & —~ sinmy ...sinns_q
cos&
V= Ty g—— 127
Ukt 2 Sinf ) ( )
cos &
b= Ty 3———— 128
Ub; 3Sinfsin 771’ ( )
ooy = (1) cosé (129
3 sinésinmy . ..sinn, 4
cos
Moo= (12 : (130)

sinésinn ...sinn, 3

Thus, the system (122)-(130) describes the motion of a rigid body in a conservative field of
external forces.
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Theorem 7.5. System (122)-(150) has n independent analytical first integrals as follows:
O (Zn 1y 206, ) = Z8 4+ 22 +sin? € = O = const, (131)

Do (Zp 1y s 2156, M1, oy pn) = \/212 L+ Z2_,siné = Cy = const, (132)

D3(Zn 1y s 20,6, M,y - oy Ma) = \/22 ..+ Z2_ssinésinng = C3 = const, (133)

D oLty s 216N, o) = A/ Z2 + Z2sinsinny, ...sinn,_4 = C,,_y = const, (134)
S, \(Znt1, o 2136, M, M2) = Zysinésinn .. .sinn, 3 = C,,_1 = const, (135)

S, (Zn-1,-- s Z1:6, M,y -y Mn2) = Cy, = const. (136)

The first integral (131) is an integral of the total energy. The first integral (136) has the

kinematic sense, “attaches” the equation on [,_,, and was found above.
Now we rephrase the Theorem 7.5.

Theorem 7.6. System (122)-(130) possesses n independent first integrals of the following
form::
Oy ZP .+ 25 +sin®E

Ui(Zpn 1, s 21560,y
1( 1 15§ n 2) q)z \/212 +Z2 281n£

= C] = const, (137)

Uo(Zytyeo s Z156,M, - oy Mn) = Cy = const, (138)
O, o ZE+Z2
Va(Zpt,..., 21 e Mpn) = = : = (% = const, 139
3( 1 1;6,m Nn—2) >, Z1sinn, s 3 (139)
P 22+ ...+ 72
\Ijan(anla RN Zl;g m,---sMn— 2) (I)3 = \é ! > 3 = C7I1—2 = const, (140)
4 \/Z1+...+Z _,sinn
) Z3 4 ..+ 22
\I/n—l(Zn—la'~~7ZI;§an17---ann 2) CI)2 = \g = C’;l—l = COTLSt, (141)
3 2P+ 2 g sinm
U (Zp1yoo s Z1;€,m, .- ,77”,2) = C’n = const. (142)

The functions ¥y, ¥,, can be selected equal to 5, ,,, respectively.

In the formulation of the Theorem 7.6 (unlike Theorem 7.5), the characteristics of smooth
of the first integrals is absent. Precisely, where the denominators (or the numerators and
denominators simultaneously) of the first integrals (137)—(142) are equal to zero, the integrals
considered, as functions, are the singularities. Furthermore, its are not often, generally speaking,
even the continuous functions.

By Theorem 7.6, the transformed set of the first integrals (137)—(142) of the system (122)-
(130) (i.e., the system under the presence of a conservative force field) still remains as the set
of the first integrals of the system studied.

For the complete integration of system (122)—(130) of the order 2(n — 1), in general, we
need 2n — 3 independent first integrals. However, after the change of variables (110) the system
(122)—(130) splits as follows:

5/ = —Wnp—1,
;. 9 cosé

w,_, =sin§ cos§ w”_z_sinf’ (143)
, cos&

Wy = wn—2wn—1ﬁa
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1 + w? cosn,

W, = dg(Wp_1, ..., W& N1, .., e —
s ( ! 16 "in-2) w,  sinn, (144)
nh =ds(Wp_1,. .., w;6M1, . 2), sS=1,...,n—3,

77;1_2 :dn_g(wn_l,...,wl;g,m,...,nn_g), (145)

where the conditions (114) hold.

The system (143)—(145) is studied on the tangent bundle (116) of the (n — 1)-dimensional
sphere S" (& my, ..., 2) ER™L 0<Emy, ... N3 < T, Ny mod 27}

We see that the independent third-order subsystem (143) (which can be considered
separately on its own three-dimensional manifold), n — 3 independent second-order subsystems
(144) (after the change of independent variable) can be substituted into the system (143)—(145)
of the order 3+2(n—3)+1 = 2(n—1), and also Eq. (145) on 7,,_s is separated (due to cyclicity
of the variable 1, _»).

Thus, for the complete integration of the system (143)-(145), it suffices to specify two
independent first integrals of system (143), one by one first integral of systems (144) (all n — 3
pieces), and an additional first integral that “attaches” Eq. (145) (i.e., only n).

Remark 7.2. We write the first integrals (137)-(142) in the variables wy, ..., w,—1 by virtue
of (110). We have:

2 2 2
Wi _o +wi_ +sin” ¢

O1(Wp—1, .-, W1 &M, oy Na) = PR = O} = const, (146)
O2(Wp_1,y -, W16, M1, ey Mp2) = Wy_osiné = CY = const, (147)
14+ w?
Osio(Wnt, .. w13, My oo Me) = ~——=C1, =const, s=1,...,n—3, (148)
SHEIR
On(Wp_1, .., w1;6,M1, -, M2) = Cr = const. (149)

Thus, two independent first integrals (146), (147) are sufficient to integrate the system (143),
the first integrals (148) (all n — 3 pieces) are sufficient to integrate the independent first-order
equations

dws 1+ w?cosn;

=1,... -3 150
dn w, sinn,’ ° peeraft ’ (150)

that is equivalent to the systems (144) after the change of independent variable, and, finally, the
first integral (149) is sufficient “to attach” Eq. (145). We have proved the following Theorem.

Theorem 7.7. The system (122)-(130) of the order 2(n — 1) possesses the sufficient number
(n) of the independent first integrals.

7.3 Complete list of the first integrals for any finite n

We turn now to the integration of the desired system (62)—(70) of the order 2(n—1) (without
any simplifications, i.e., in the presence of all coefficients).

Similarly, for the complete integration of system (62)—(70) of the order 2(n — 1), in general,
we need 2n — 3 independent first integrals. However, after the change of variables (110) the
system (62)—(70) splits as follows:

& = —w,_1 — bysiné,
;. 9 cosé

w,_; =sin§ cos§ w”_z_sinf’ (151)
, cos&

Wy_9 = wn—an—nga
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1+ w? cosn;
ws  sinn,’ (152)
nh =ds(Wp_1,. .., w;6M1, . 2), sS=1,...,n—3,

w; = ds(wn_17 e ,U)l;é';nly s 77771—2)

?7;172 :dn,Q(wn,l,...,wl;f,m,...,nn,g), (153)

where the conditions (114) hold.

The system (151)—(153) is studied on the tangent bundle (116) of the (n — 1)-dimensional
sphere S" " Y(&,m1, ..., pua) ER™ L 0<E M, 3 < T, Np_g mod 27}

We see that the independent third-order subsystem (151) (which can be considered
separately on its own three-dimensional manifold), n — 3 independent second-order subsystems
(152) (after the change of independent variable) can be substituted into the system (151)—(153)
of the order 3+2(n—3)+1 = 2(n—1), and also Eq. (153) on 7,,_s is separated (due to cyclicity
of the variable 1, _»).

Thus, for the complete integration of the system (151)-(153), it suffices to specify two
independent first integrals of system (151), one by one first integral of systems (152) (all n — 3
pieces), and an additional first integral that “attaches” Eq. (153) (i.e., only n).

First, we compare the third-order system (151) with the nonautonomous second-order
system

dw,_; sinécosé —w?_,cosé/siné
d¢ —Wp_1 — bysiné ’

154
dwy_g  Wp_oWy_1 cos/sing (154)
dé —wy_q — b.siné
Using the substitution 7 = sin &, we rewrite system (154) in the algebraic form:
dw,—1  T— Wy /T
dr  —w,_q — b,
155
dwn—Q o wn—2wn—1/7_ ( )
dr —wp_q — b,
Further, if we introduce the uniform variables by the formulas
Wp_1 = UT, Wp_o = UIT, (156)
we reduce system (155) to the following form:
d 1—u?
Tﬁ + U = U
dr —Uy — b,
(157)
dU1 T U1U
T— =
d P uy — D,
which is equivalent to
dug 1 —u? +ud — buy
T— =
dr —Ug — b ’
* 158
du1 2U1U2 — bu1 ( )
T— =
dr —uy — b,

We compare the second-order system (158) with the nonautonomous first-order equation

duy 1 —wuf+uj+ by

d_u1 n 2U1U2 -+ b*ul

(159)
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which can be easily reduced to the exact differential equation

2 2

Uy

Therefore, Eq. (159) has the following first integral:

u3 + u? + boug + 1
Uy

= (] = const, (161)

which in the old variables has the form

w? |+ w? , + b, 1sin€ +sin? ¢
O1 (Wy1, W0 §) = — - Y. = C} = const. (162)

Remark 7.3. We consider system (151) with variable dissipation with zero mean (see [11, 12]),
which becomes conservative for b, = 0:

5, = —Wp-1,
w!,_, =sinécos & — w? cos&
n—1 n—2 sin§ ) (163)
W — e o cosé
n—2 — Wn-2Wn—-1 sing'
It has two analytical first integrals of the form
w2 4w, +sin® & = Cf = const, (164)
Wy—osiné = C5 = const. (165)

It is obvious that the ratio of the first integrals (164), (165) is also a first integral of system
(163). However, for b, # 0 both functions

w? |+ w2y + baw, 1 siné +sin? ¢ (166)

and (165) are not first integrals of system (151), but their ratio (i.e., the ratio of the functions
(166) and (165)) is a first integral of system (151) for any b..

Later on, we find the obvious form of the additional first integral of the third-order system
(151). For this, at the beginning, we transform the invariant relation (161) for u; # 0 as follows:

b\’ i \? b2+ 02

We see that the parameters of the given invariant relation must satisfy the condition
b2+ C? —4>0, (168)

and the phase space of system (151) is stratified into a family of surfaces defined by Eq. (167)
in the coordinates uy, us.
Thus, by virtue of relation (161), the first equation of system (158) has the form

duy  2(1 + boug + uj) — C1UL(Ch, up) (169)

T— =
dr —Ug — b* ’
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where

1
Ui(Cryua) = S{C & VO — 40 + bous + 1)}, (170)

and the integration constant C} is chosen from condition (168).
Therefore, the quadrature for the search of an additional first integral of system (151) has
the form

/ﬂ _ / (= — up)dus . (171)
© ) 204 by + ) — C{Cy £ /CF — 408 + bouy + D)} /2
Obviously, the left-hand side up to an additive constant is equal to

In |sin&]. (172)
If

b.
uy+ 5 =1, b = b2+ CF — 4, (173)

then the right-hand side of Eq. (171) has the form

1 / d(b3 — 4r?) dry
(

A -
4./ (b2 —4r?) £ C1\/bF — 4r? (b3 — 4r3) £ C1\/ b2 — 4r?
1 | =& b
= —5hn %il + 50, (174)
1

where

d?"3
I :/ . T3 = 4/b% — 4r2 175
1 M<T3icl) 3 1 1 ( )

In the calculation of integral (175), the following three cases are possible.
L b, >2.

b2 —4 b? — r?
P S (VAU AUk S TR
b2 — 4 r3 £ Cy b2 —4
1 \/62—4—\/17%—7“% C1
+ In * + const. 176
2,/b2 — 4 ‘ r3 £ C) $\/b?ﬁ—ll (176)
II. b, < 2. \
1 . :|2017’3—|—b1
I, = ———arcsin ——————— + const. 177
! /4 — b2 by(rs = Ch) (177)
III1. b, = 2.
I, = Vb =3 + const (178)
1_:F01(7"3:|201) '

When we return to the variable

Wp—1 b*
_ b. 179
" e 2 (179)

we obtain the final form for the value I;:

L. b, > 2.
o 1 ] \/b§—4:i:27“1 + Cl

L =— +
' 24/ —4 ! VB =4ty 2 -4
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1 \/bz—4:|:27”1 C

—1—2\/62 — In NG F NCET + const. (180)
IL. b, < 2.
I, = _ arcsin EC1yb — 4 + b + const. (181)
Va—D? bi(\/0F —4rf £ C1)
ITI. b, = 2. -
L = $C1(\/Wi o + const. (182)

Thus, we have found an additional first integral for the third-order system (151), i.e., we
have a complete set of first integrals that are transcendental functions of the phase variables.

Remark 7.4. In the expression of the found first integral, we must formally substitute the
left-hand side of the first integral (161) instead of CY.

Then the obtained additional first integral has the following structure:

Oo(Wy—1, Wy—2;&) = G <sin§, ) = (5 = const. (183)
Thus, we have found two first integrals (162), (183) of the independent third-order system
(151). For its complete integrability, it suffices to find one by one first integral for the systems
(152) (all n — 3 pieces), and an additional first integral that “attaches” Eq. (153).
Indeed, the desired first integrals coincide with the first integrals (148), (149), precisely:

VIitwd

Osro(wg;ns) = Sn 7 to=const, s=1,...,n—3, (184)

Chr_1COSNp_3

O (Wh—3, W45 Mgy Mn—3, Nn—2) = Nn—o £ arctg = O/ = const, (185)

2 2 2
Cr_osin®n, 3 — C%

in this case, in the left-hand side of Eq. (185), we must substitute instead of C,_5,C,,_1 the
first integrals (184) for s =n —4,n — 3.

Theorem 7.8. The system (151)-(153) of the order 2(n — 1) possesses the sufficient number
(n) of the independent first integrals (162), (183), (184), (185).

Therefore, in the considered case, the system of dynamical equations (62)-(70) has n
first integrals expressing by relations (162), (183), (184), (185), which are the transcendental
functions of its phase variables (in the sense of the complex analysis) and are expressed as a
finite combination of elementary functions (in this case, we use the expressions (171)—(182)).

Theorem 7.9. Three sets of relations (26), (40), (50) under conditions (31)-(33), (53), (57)
possess n the first integrals (the complete set), which are the transcendental function (in the
sense of complex analysis) and are expressed as a finite combination of elementary functions.
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8 C(Case where the moment of nonconservative forces
depends on the angular velocity

8.1 Dependence on the angular velocity

This section is devoted to dynamics of the multi-dimensional rigid body in the multi-
dimensional space E™. Since this subsection is devoted to the study of the case of the
motion where the moment of forces depends on the angular velocity tensor, we introduce this
dependence in the general case.

Let z = (x1n, ..., x,n) be the coordinates of the point IV of application of a nonconservative
force (interaction with a medium) on the (n — 1)-dimensional disk D"~ !, and Q = (Q1, ..., Q,)
be the components independent of the angular velocity. We introduce only the linear dependence
of the functions (z1y,...,Z,n) on the angular velocity tensor 2 since the introduction of this
dependence itself is not a priori obvious.

Thus, we accept the following dependence:

r=0Q+ R, (186)
where R = (Ry,..., R,) is a vector-valued function containing the angular velocity tensor €).
Here, the dependence of the function R on the angular velocity tensor is gyroscopic:

Ry hy
Ry 1 h
: Up :
Rn hn
where (hyq, ..., h,) are certain positive parameters.
Now, for our problem, since x1y = zy = 0, we have
w’f'n_ w’l”n_ n w?"
Ton = Q2 — Iy =, o3y = Qs+ My 2 Ty = Qu+ (1) h (188)
UD Up v

Thus, the function ry is selected in the following form (the disk D"~! is defined by the
equation z;y = 0):

0
T 1
rv=| | = Rla)iy — —Qh, (189)
: D
TnN
where
hy
h
iy =1, (g,ﬁl,...,ﬁn_2> ch=| ] | 2esom) (190)
ho,
(see (6), (39)).
In our case
0
cos [
iy = sin (31 cos [y . (191)

sin 31 ... sin [3,_3 cos B,
sin 51 ...sin Bn—?
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Thus, the following relations

wrn —2

xon = R(a) cos B — hy , 3y = R(a)sin f; cos By + hlv—’ .
D D

Tpo1ny = R(a)sinfy .. .sin fB,_3cos B2 + (—1)”h1%, (192)

Wy

Toy = R(a)sin By ...sin fBp_o + (—=1)"Thy o

hold, which show that an additional dependence of the damping (or accelerating in some
domains of the phase space) moment of the nonconservative forces is also present in the system
considered (i.e., the moment depends on the angular velocity tensor).

And so, for the construction of the force field, we use the pair of dynamical functions
R(a), s(a); the information about them is of a qualitative nature. Similarly to the choice of the
Chaplygin analytical functions, we take the dynamical functions s and R as follows:

R(a) = Asina, s(a) = Beosa, A, B > 0. (193)

8.2 Reduced systems

Theorem 8.1. The simultaneous equations (26), (40), (50) under conditions (31)-(33), (189),
(193) can be reduced to the dynamical system on the tangent bundle (5) of the (n — 1)-
dimensional sphere (4).

Indeed, if we introduce the dimensionless parameters and the differentiation by the formulas

AB hiB

by=Iny, n?=—-— H,=—"—
1o 0 = TV L Y T (= 2) oy

L < >= NUs <>, (194)
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then the obtained equations have the following form:

&+ (by — H1,)& cos€ +sin cos E—

| ' ' ‘ _ sin
- [7712 + 0 sin®n; + 7752 sin 7y sin®mp + ...+ 777’12_2 sin?7; . .. sin? nn—3] cosg N
1+ cos f
I !/
+ (b — Hyx )1y cos € + PO
m + ( 1)1 €08 & + €1y LcosEsiné
- [775 + n5 sin® ny + 7 sin® pesin® s + ... + 2y sinny . .. sin® ”n*fﬂ sin g cosm = 0,
1+ cos?¢
" !/
+ (by — Hyy)1m5 cos € + i
My + ( 1)1y 08 & + £y 2cos€siné
Ccos
+ 2y
sin m
_ [ng + 1 sin®ns + 77? sin® mysin® g + ... + 7, sin®n3 .. . sin’ 77“_3} sin7jz cos 1)y = 0,
1+ cos?&
/! 'nt
+ (by — Hyx)na cos & + PO
15 + ( 1)1l €08 & + €5 ScosEsiné
cos
+ 2y By gt ST
sin m sin 77

— [774 + n; 2 5in? Ny + n6 sin? in sin? s+ ...+ 777'12_2 sin? N4 - . .sin? nn_g} sinnz cosnz = 0, (195)

1+ cos? €&
1/ b H . - Tm s
Mg+ ( 1) Mg cos & + &), YoosEsiné
cOS cosn,
T s S U A e Lo
Sm SN 7)p—5
- [77;2—3 + 777,12—2 Sin2 7771—3} sin Nn—4 COSTp—q = O,
1+ cos? €
1/ b H . - s
nn—3+( 1)nn SCOS§+§T/n Scosﬁsinf
cOS COS My
+ 201, _5— 771 A 2m, M) 3¢
sin 771 Sin 17,4
— 1} 5 sinT,_5cos g = 0,
1+ cos®&
1/ b H . - rTm s
Mo+ ( 1) Mg cos & + &), 2 CosEsing
oS COS T)n—3

+ 27]17771 2 +..o.+ 2nn 377n 2 = 07 b* > 07 Hl* > 0.
Sll’lnl

sin 7,3

In particular, for n = 5 we have:

¢ + (b — Hi.)& cos€ +siné cosé — [ + n5 sin® iy + 15 sin® iy sin® 1) (S:;I;z =0,

ny + (b. — Hy)mpcos§ 4 & /ﬁ [0 + 7y sin® ] sin g cosmy = 0,

ny + (bs — Hy)nhcosé + & /(lx)—is_éc—(s)ilg 277'1775205—21 — 1§ sinng cosng = 0, (196)
(0= Fr cos€ + € S 4 Oy gy SR

b, >0, Hi, > 0.

After the transition from the variables z (about the variables z see (48)) to the intermediate
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dimensionless variables w
2k = NoVoo (1 + buH1) Zgy k=1,...,m—2, 2z, 1 = NoUso(1 + b H1:) Zp—1 — noUsoby sin &, (197)
system (195) is equivalent to the system
¢ = (14 b,Hy.) Zyy — bosing, (198)

Z! = —sin€cosé+

V(L4 bHL) (22 4.+ Z,%Q)‘;)jg + H1Zp 1 coSE, (199)
Zy g =—(1+40b.Hy.) Zn—QZn—lcf)SS_
sin &
COS ¢ COS
— (1 +bH(ZE+.. . + 722 )~ S BN H,Z, sy cosE, (200)
sin & sin
COS
7= — (L4 baHL) ZosZd 8 4 (1 0 HL) Zy g D8 5T
sin & sin & sinny
1
b HL) (224 472 )SBE L ST g cose, (201)

sin & sinn; sinn,

n—2
20 = —(1+ boHy) 2,258 {Z(—nsﬂzn_ s }+

sin & — “sinm; . ..sinn,_y
+Hy,Zy cosé, (202)
cos &

V= —(1+b.Hy) Z, , 203
T (1+b.Hy.) Ly (203)
L= (L4 b H) Zy g8 204
me =1+ 1) 3sm§sin771 (204)
oy = (=1 (1 + 0. Hy) Zo cosé (205)

n=3 o sinésinmny ...sinn,_4
Mo = (=1)" (1 + b.H1,) Zy cosg (206)

sinésinny ...sinn,_3’

on the tangent bundle

T*Sn_l{<anl> ) 21;577717 cee 7777172) € RQ(n_l) : 0 < 57 My ---5Mn-3 S T Tn—2 mod 27[_}
(207)

of the (n — 1)-dimensional sphere S"'{(&,my,..., 70 2) € R 1 0 < Emy,ev g <
T, Mg mod 27}.

We see that the independent subsystem (198)—(206) of the order 2(n — 1) (due to cyclicity
of the variable 7,_5) can be substituted into the system (198)-(205) of the order 2(n — 1) — 1
and can be considered separately on its own (2n — 3)-dimensional manifold.

In particular, for n = 5 we obtain the following eighth-order system:

¢ = (14 b,Hy,) Zs — b, sing, (208)

Zy = —sin€ cos &+
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0s§

+ (14 b,Hy,) (Z2 + 72 + Z2) e + Hy.Z, cos €, (209)
Zh = — (14 boHy) 252,255~
3 — 1% 344 nf
(14 bHy) (724 22) S5 g cose (210)
sin & sin
Zh = — (14 bt Z2o7: 258 b (1 4 boHL) 252,558 €05
sin & sin & sin
1
Ot b Hy) 72988 L COST cose (211)
sin & sin 7y sin 7,
cos cos £ cos
Z{ - —<1+b*H1*) 21Z4 N g (1+b Hl*) leg g 771—
sin & sin & sin
1
(b)) 202,588 LS g e, (212)
sin & sinn; sin 7y
W, = — (1 + b,H,.) chosg (213)
L (14 b H) Zo—258 (214)
= 2 ein Esingy
cos &
: 1+ b.Hy.) 2y , 215
s =—(1+ 1) 31n§sin 71 8in 7)o (215)
on the tangent bundle
T*S4{(Z47 Z37 Z27 Z1;£77]17n27n3) S R8 0 0 < 57”177]2 < ™ M3 mod 277} (216)

of the four-dimensional sphere S*{(&,m1,m2,m3) € R*: 0 < &, my,me < 7, 13 mod 27},

We see that the independent eighth-order subsystem (208)—(215) (due to cyclicity of the
variable 73) can be substituted into the seventh-order system (208)—(214) and can be considered
separately on its own seven-dimensional manifold.

8.3 Complete list of the first integrals for any finite n

We turn now to the integration of the desired system (198)—(206) of the order 2(n — 1)
(without any simplifications, i.e., in the presence of all coefficients).

Similarly, for the complete integration of system (198)—(206) of the order 2(n—1), in general,
we need 2n — 3 independent first integrals. However, after the change of variables

anl Wp—1
Zn72 Wn—2
- 5
Zs Wa
Zy w1
Zs Zs3
n— =—Z n—1, n - Z2 . ) n 7 n—4 — T T g 217
o R R N R e
Zn73 Zn72
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the system (198)—(206) splits as follows:

& =—(1+b.Hy)w, 1 — bysing,

. cos &
w!,_ | =sin€cosé — (14 b, Hy )w?_ 2Sne + Hy,w,—q cosé, (218)
wn (1 + b Hl*)wn 2Wnp— ICOSE + Hl*wn—2 COS£7
1 2 R
wh = dg(wp_1, .., w5 E M, ) + s COsT)

ws  sinng’ (219)
Mo =ds(Wp_1,...,w;&, M,y Mp—2), S=1,...,n—3,

77;72 = dnf2<wn717 ey Wi 57 M- -- ,77n72)7 (220)
where
cos &
dl(wn—la s )w1;§)7717 s 77771—2) - _(1 + b*Hl*)Zn—2(wn—1a ... 7w1) . 5
sin &
cos &
. i tns) = (1 buH ) Zo s (w1, - w0y 2o
d2<w 1- w17€ m, » 1 2) ( + 1 ) 3(11) 1 wl)smésmm

COS
(Lt b H) 2y (s ) :

—~

dn—z(’wn 1w §, 7717---77771,—2) SmZsinm Sin 3,
—

(221)
in this case
Zy = Zp(Wp1,...,w1), k=1,...,n—2, (222)
are the functions by virtue of change (217).
In particular, for n = 5 we obtain the following eighth-order system:
& =—(1+b.Hy)wy — bysiné,
coS
w) = sin€ cos & — (1 + b, Hy, )w? g + Hy,wy cosé, (223)
wy=(1+0b Hl*)w3w4cosg + Hy,ws cosé,
sin
1+ w3 cosny
5 = d ; Y ) ) 2 )
Wy 2(104, W3, Wa, W1 f m, 72 773) Wy sin o (224)
77& = dZ(w‘l? W3, Wa, W13 ga m, 12, 773)7
1+ w? cosny
I d . 1 7
wy = dy(wy, w3, wa, wi; &, M1, M2, M3) W, sinm, (225)
?71 = dl(w47 W3, Wa, W13 57 m, 12, 773)7
77;3 - d3<w47w37w27w1;§7n17n2)7’]3)7 (226)
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where

cos &
dy (wag, w3, wy, wi; &, M1, M2, M3) = —Z3(Wa, W3, Wa, W1) — =
sin &
wiws  cosé
=t
V1 +w?sing
cos&
d2(w47w37w27w1§§7771777277]3) - ZQ(w47w37w27w1).—. —
sin & sin 227)
_ 4 Wols3 cos & (
V14 w?y/1T 4 wisindsing’
cosé
d3(w47w37w27w1;§777177727n3> - _Zl(w4aw37w27wl) N N N =
sin & sinn; sinn,
_ w3 cosé
\/1 + w%\/l + w? sin & sinn; sin gy’
in this case
Zy = Zp(wy, w, wa,wy), k=1,2,3, (228)

are the functions by virtue of change (217).
The system (218)—(220) is studied on the tangent bundle

T.S" H(wu_1, ..., wi; &m0, ... us) € RV 0<&m,. .. Dy < T, s mod 27}
(229)
of the (n — 1)-dimensional sphere S" 1{(&,ny,...,mn2) € R 1 0 < &ny,.eo s <
T, M2 mod 27}.
In particular, the system (223)-(226) is studied on the tangent bundle

T.S*{(wa, w3, wa, w13 &, m1,m0,m3) € R® 1 0 < & mrymp <, 13 mod 27} (230)

of the four-dimensional sphere S*{(&,m1,m2,m3) € R : 0 < & 1,10 < 7, 13 mod 27},

We see that the independent subsystem (218) (which can be considered separately on its
own three-dimensional manifold), n — 3 independent second-order subsystems (219) (after the
change of independent variable) can be substituted into the system (218)—(220) of the order
2(n — 1), and also Eq. (220) on n,_» is separated (due to cyclicity of the variable 7,_s).

In particular, we see that the independent third-order subsystem (223) (which can be
considered separately on its own three-dimensional manifold), two independent second-order
subsystems (224), (225) (after the change of independent variable) can be substituted into the
eighth-order system (223)—(225), and also Eq. (226) on 73 is separated (due to cyclicity of the
variable 73).

Thus, for the complete integration of the system (218)-(220), it suffices to specify two
independent first integrals of system (218), one by one first integral of systems (219) (all n — 3
pieces), and an additional first integral that “attaches” Eq. (220) (i.e., only n).

In particular, for the complete integration of the system (223)—(226), it suffices to specify
two independent first integrals of system (223), one by one first integral of systems (224), (225),
and an additional first integral that “attaches” Eq. (226) (i.e., only five).

First, we compare the third-order system (218) with the nonautonomous second-order

system
dw,—1  sin€cos€ — (1+b,Hy.)w, _5cosé/sing + Hywy_1 cosé

n—2
df —(1 + b*Hl*)U}n,1 — b* sin£ ’ (231)
dwn—o (1 + b Hy,)wy_owy_1 cos&/siné + Hy,wy,_gcosé
d€ n —(]. + b*Hl*)wn_l - b* sin§ .
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Using the substitution 7 = sin¢, we rewrite system (231) in the algebraic form:

dwyy 7= (L4 b Hy)w) o/T + Hycwyy
dr —(1+b.Hy)wy—y — b,T ’

dwn—o (1 + b Hy)wp_ow,_1/7T + Hiwy_o
dr —(1+ buHy w1 — bt '

(232)

Further, if we introduce the uniform variables by the formulas
W1 = UsT, Wp_o = UIT, (233)
we reduce system (232) to the following form:

dUQ 1-— (1—|—b*H1*)u%+H1*u2
T—— + Uy = ,
dT —<1+b*Hl*>U2 —b*

d’LLl (1 + b*Hl*)UﬂLQ + Hl*ul

T T T T U b H ) —b,

(234)

which is equivalent to

dT n _(]- + b*Hl*)UQ - b* ’
du1 . 2(1 + b*Hl*)U,1U2 + (b* + Hl*)ul

Tar T (1 + by Hy.)us — b

(235)

We compare the second-order system (235) with the nonautonomous first-order equation

-2 , 236
du1 2(1 + b*Hl*)u1u2 + (b* + Hl*)ul ( )
which can be easily reduced to the exact differential equation
y ((1 + b Hy) (U3 + uf) + (be + Hi)us + 1) o (237)
Uy
Therefore, Eq. (236) has the following first integral:
14+ b, Hy,) (u? 2 b, + Hi. 1
( + 1 )<u2 + ul) + ( + 1 )u2 - =C, = const, (238)
Uy
which in the old variables has the form
1 b*H * 2 2 b* H * n— i in?
O1(wy—1, wy—2;§) = 1+ 1) (s W) ( - 1o Jwn-siné + sin¢ = (| = const.
Wy _9SINE
(239)

Remark 8.1. We consider system (218) with variable dissipation with zero mean, which
becomes conservative for b, = Hy,:

¢ =—(1+b)w, 1 — b,sing,
cosé

w!, | =sinécosé — (1+b2)w? ,—
S

iné

+ byw,_9 cos&.

+ bywy,—1 cos, (240)
cos &
sin &
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It has two analytical first integrals of the form
(1+02) (w2 | +w? ) + 2b,w,_ysin€ +sin® & = Cf = const, (241)

Wp_9siné = C5 = const. (242)

It is obvious that the ratio of the first integrals (241), (242) is also a first integral of system
(240). However, for b, # Hy, both functions

(14 b, Hy) (w2 + w2 y) + (by + Hy)wy,_1sin € +sin® € (243)

and (242) are not first integrals of system (218), but their ratio (i.e., the ratio of the functions
(243) and (242)) is a first integral of system (218) for any b., Hy..

Later on, we find the obvious form of the additional first integral of the third-order system
(218). For this, at the beginning, we transform the invariant relation (238) for u; # 0 as follows:

b + Hi. \° o > (b —H,)?+C2—4
s U N U . 244
(“2 LT b*Hl*)) * (“1 2(1 + b*Hl*)> A(1 + b.H,,)? (244)

We see that the parameters of the given invariant relation must satisfy the condition
(b, — Hi)* +C; —4 >0, (245)

and the phase space of system (218) is stratified into a family of surfaces defined by Eq. (244).
Thus, by virtue of relation (238) the first equation of system (235) has the form

T% ~ 2(1+ b, Hyui 4 2(b + Hyug + 2 — CLUL(Ch, ug) (246)
dr N —b* — (]_ + b*Hl*)UQ ’

where

Uy (Ch,ug) = 5 ! {C1 £ Uy(Ch,uz)}, (247)

Us(Cy,up) = \/012 — 4(1 + b Hy, ) (1 4 (by 4+ Hiy)ug + (14 b Hyu)u3),

and the integration constant C is chosen from condition (245).
Therefore, the quadrature for the search of an additional first integral of system (218) has
the form

dr _
—=
Obviously, the left-hand side up to an additive constant is equal to
In |sin¢]. (249)
If -
wpt e 2 (b, HL2 42 -4, (250)

T 2(1+b.Hy)
then the right-hand side of Eq. (248) has the form

_1/ d(b? — 4(1 + b, Hy,)r?)
(b2 — 4(1 + b Hy,)r?) &£ Oy /02 — 4(1 + b Hy)r?

4
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dT1

+(b, — Hy, 1+b*H*/ -
(b = H)( ) A b £ R - T bR

4(1 + b Hy)r? —b, + Hy,
= +1| &+ —71 251
Cl 2 1, ( )
where p
U]
I:/ , 3 =1/0% —4(1 + b, Hy,)r?. 252
1 b%—r%(rgzlzcl) 3 \/1 ( 1)1 ( )

In the calculation of integral (252), the following three cases are possible.

b, — Hi,)?2 — 4 b? — 12
I, =— ! In \/( 1+) +\/1 Tsi Cy i
2¢/(b. — Hy.)2 — 4 r3 = C V(b — Hy,)?2 — 4
by — Hy )2 —4 — /b3 —
\/ . Vb= F G + const.  (253)
2\/b —Hl* r3j:Cl \/(b*—Hl*)2—4
IL. b, — Hy| < 2.
1 . :l:Ong +b2
I = arcsin ————— + const. 254
! \/4 — (be — Hi.)? bi(rs £ CY) (254)
IT1. |b, — Hy.| = 2.
L = /b + const. (255)
te :FC (7“3 + 01) i

When we return to the variable

Wn—1 b* + Hl*
pr— 2
T Sne T2+ i) (256)

we obtain the final form for the value I;:
I. ’b* — Hl*’ > 2.

I 1 1 \/(b*—Hl*)2—4:|:2(1—|—b*H1*)7"1 + 01 i
= — n
o/ —HL) -4 VB — AL+ b, Hy )22 + O Vb —H,)? — 14
. — H,)2 —4F2(14b,H,
+ ! In \/(b ! ) il ( + b, )r1 - G -+ const
2¢/(bs — Hy. )2 — 4 V0 —4(1 + b Hy, )% + O V(b — Hp )2 —4
(257)
IL. |b, — Hy,| < 2.
1 +C1\/0? — 4(1 + b, Hy,)%r? + b2
I = arcsin /b FOHLP DL st (258)
V4 — (b, — Hy.)? bi (/02 — 4(1 + b Hy, )2} + Cy)
IIIL. |b, — Hy.| = 2.
2(1 + b, H,
(L + b Hir + const. (259)

L =7
LT OB —A(L + b Hy )2 £ CY)

Thus, we have found an additional first integral for the third-order system (218), i.e., we
have a complete set of first integrals that are transcendental functions of the phase variables.
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Remark 8.2. In the expression of the found first integral, we must formally substitute the
left-hand side of the first integral (238) instead of C4.

Then the obtained additional first integral has the following structure:

Wp—1 Wn—2
sin€’ siné

Os(Wp_1,Wy_2;§) =G (Sinf, ) = (y = const. (260)

Thus, we have found two first integrals (239), (260) of the independent third-order system
(218). For its complete integrability, it suffices to find one by one first integral for the systems
(219) (all n — 3 pieces), and an additional first integral that “attaches” Eq. (220).

Indeed, the desired first integrals coincide with the previous first integrals, precisely:

V1+w?
O L (wg;ns :—U)S:Csﬁzconst, s=1,...,n—3, 261
s+2

sin 7

Ch_1COSNp_3

O (Wy—3, Wn—45 M1, Mn—3, Nn—2) = Nn_o £ arctg = C,, = const, (262)

2 a2 2
C2_ysin? 5 —C

n—1

in this case, in the left-hand side of Eq. (262), we must substitute instead of C,_5,C,_1 the
first integrals (261) for s =n —4,n — 3.

Theorem 8.2. The system (218)-(220) of the order 2(n — 1) possesses the sufficient number
(n) of the independent first integrals (239), (260), (261), (262).

Therefore, in the considered case, the system of dynamical equations (218)-(220) has n
first integrals expressing by relations (239), (260), (261), (262), which are the transcendental
functions of its phase variables (in the sense of the complex analysis) and are expressed as a
finite combination of elementary functions (in this case, we use the expressions (248)—(259)).

Theorem 8.3. Three sets of relations (26), (40), (50) under conditions (31)-(33), (189), (193)
possess n the first integrals (the complete set), which are the transcendental function (in the
sense of complex analysis) and are expressed as a finite combination of elementary functions.
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