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Abstract:Proposed activity presents next stage of the study of the problem of the plane-parallel motion of a rigid
body interacting with a resistant medium through the frontal plane part of its external surface. Under constructing
of the force acting of medium, we use the information on the properties of medium streamline flow around in quasi-
stationarity conditions (for instance, on the homogeneous circular cylinder input into the water). The medium
motion is not studied, and we consider such problem in which the characteristic time of the body motion with
respect to its center of masses is comparable with the characteristic time of motion of the center of masses itself.
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If in [1, 2], we represent the asymptotical stabil-
ity conditions of the rectilinear translational decelera-
tion (drag), and in [2, 3], we obtained the new multi-
parametric family of phase patterns in the space of
quasi-velocities, then in this activity, we prepare the
qualitative material for the preparation of further nat-
ural experiments on the motion of the hollow circular
cylinders in a medium.

1 Preliminaries

Let give the brief summary to the previous stages of
studying. Also, by the reason of complexity of non-
linear analysis, the initial stage of such a study is the
neglecting of the dependence of the medium interac-
tion force moment on the angular velocity and use of
such dependence on the angle of attack only [1, 3]).

From the practical view point it is important the
problem of studying of stability of so-called unper-
turbed (rectilinear translational) motion under which
the velocities of body points are perpendicular to the
plate (cavitator).

The whole spectrum of results found under the
simplest assumption on the absence of the medium
damping action on a rigid body allowed the author to
make the conclusion that it is impossible to find those
conditions under which there exist the solutions cor-
responding to the angular body oscillations of a finite
amplitude.

The experiment in the motion of homogeneous
circular cylinders in the water (see [4, 5]) justified that

in modelling the medium action on the rigid body, it is
also necessary to take account of an dependence of the
medium interaction force moment on the angular ve-
locity of the body. Herewith, there arise the additional
members that brings a dissipation to the system.

In studying the class of body motions with the
finite angles of attack, the principal problem is find-
ing those conditions under which there exist the finite
amplitude oscillations in a neighborhood of the unper-
turbed motion. Therefore, there arises the necessity of
a complete nonlinear study.

In earlier author’s works, one has succeeded to
use the instability of the rectilinear translational body
motion for the methodological purposes (see [5]), i.
e., in determination of unknown parameters of the
medium action on the body in quasi-stationarity con-
ditions.

The account of the medium damping action on
the rigid body leads to an affirmative answer to the
principal question of the nonlinear analysis: under the
body motion in a medium with finite angles of attack,
in principle, there can arise stable auto-oscillations
which can be explained by the account of an addi-
tional dependence of the medium action on the body
angular velocity that brings an additional dissipation
to the system.

Furthermore, under the applying of methodology
of studying of the dissipative dynamical systems of
certain type, we obtain the new multi-parametric fam-
ily of phase patterns on the two-dimesional cylinder;
this family consists of the infinite set of topologically



non-equivalent phase patterns changing its topologi-
cal types under the variation of the system parameters
by the degenerate way (see also [6]).

2 Introduction

The presented work is the study of the problem of a
rigid body motion interacting with a medium through
frontal plane part (the plate of its external surface).
Under constructing of the force acting of medium,
we use the information on the properties of medium
streamline flow around in quasi-stationarity condi-
tions [7, 8]. The medium motion is not studied, and
we consider such problem in which the characteristic
time of the body motion with respect to its center of
masses is comparable with the characteristic time of
motion of the center of masses itself.

By the reason of complexity of nonlinear analy-
sis, the initial stage of such a study is the neglecting of
the dependence of the medium interaction force mo-
ment on the angular velocity and use of such depen-
dence on the angle of attack only (see also [8]).

From the practical view point it is important the
problem of studying of stability of so-called unper-
turbed (rectilinear translational) motion under which
the velocities of body points are perpendicular to the
plate (cavitator).

The whole spectrum of results found under the
simplest assumption on the absence of the medium
damping action on a rigid body allows the author to
make the conclusion that it is impossible to find those
conditions under which there exist the solutions cor-
responding to the angular body oscillations of a finite
amplitude.

The experiment in the motion of homogeneous
circular cylinders in the water (see [9]) justified that in
modelling the medium action on the rigid body, it is
also necessary to take account of an dependence of the
medium interaction force moment on the angular ve-
locity of the body. Herewith, there arise the additional
members that brings a dissipation to the system.

As mentioned above, in studying the class of body
motions with the finite angles of attack, the princi-
pal problem is finding those conditions under which
there exist the finite amplitude oscillations in a neigh-
borhood of the unperturbed motion. Therefore, there
arises the necessity of a complete nonlinear study.
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Figure 1: Plane-parallel motion of symmetric rigid
body in a resisting medium

3 Plane-Parallel Motion of Symmet-
ric Rigid Body in a Resisting
Medium

Assume that ahomogeneousrigid body of massm
executes a plane-parallel motion in a uniform flow
of medium, and that a certain part of the external
body surface is a plane plate being under the medium
streamline flow around conditions. In the case of ab-
sence of tangent forces, this means that the action of
the medium on the plate reduces to the forceS (ap-
plied at the pointN ) whose line of action is orthogo-
nal to the plate (Fig. 1). Let the remained part of the
body surface be situated in a volume bounded by the
flow surface that goes away from the plate boundary
and is not subjected by the medium action. For ex-
ample, similar conditions can arise after the body en-
trance into the water [9]. We also assume that gravity
force acting to the body, is negligible small in contrast
with the resistance (interaction) force of a medium.

Let us relate to the body the right coordinate sys-
temDxyz whose axisz moves parallel to itself, and
for simplicity, assume that the planeDzx is the geo-
metric symmetry plane of the body. Then

among the possible motions, there exists the
regime of the rectilinear translational drag (the un-
perturbed motion) which is perpendicular to the plate
AB. Herewith, the perpendicular dropped from the
body center of gravityC on the plate plane belongs
to the line of the action of the forceS. And under the
perturbation of this regime, the velocity vectorv of
the pointD relatively the medium, deviates, in gen-
eral, from the axisDC of geometric symmetry on the
certain angle (of attack)α.

To construct the dynamical model, let us intro-
duce the first three phase coordinates: the valuev of
the velocity of the pointD (Fig. 1), the angleα, and
the algebraic valueΩ of the projection of the body ab-
solute angular velocity on the axisz, AB = ∆.

Assume that the value of the forceS quadrati-



cally depends onv S = s1v
2 with certain coeffi-

cient s1 (Newtonian drag). One usually represents
s1 in the form s1 = ρPcx/2, wherecx is now the
dimension-free coefficient of the frontal resistance (ρ
is the medium density andP is the plate area). This
coefficient depends on the angle of attack, the Struchal
number, and other quantities which are usually con-
sidered as parameters in the static models. In what fol-
lows, we also introduce the following additional phase
variable of the “Struchal type”ω ∼= Ω∆/v, and also
the auxiliary functions = s1sgncosα, herewith, the
interaction of a medium to the body is defined by the
pair of functions(yN , s).

Let us define the dependence of coefficients1 on
the angle of attack, i. e., in principle, we assume
that the values is the function ofα, and the value
yN = DN is the function of the pair of dimension-
free variables(α, ω).

As was mentioned, the previous works (see, for
instance, [8, 10]) are devoted to such studying of
plane-parallel interaction of the body with a medium,
in which we take into account the dependence of the
pair(yN , s) on the angle of attack only. We also study
the plane-parallel and spatial body motions in nonlin-
ear statement in the case of dependence of the value
s on the angle of attack, and under the condition of
an additional dependence of the functionyN on the
normalized angular velocityω.

The problem of a free deceleration of the body
with the small angles of attackforms the further no-
tation on the nonlinear dynamical systems describ-
ing the interaction of a medium with the body tak-
ing account of so-called rotational derivatives of the
moment with respect to the body angular velocity.
The term “rotational derivative” is often used in hy-
drodynamics in the case when the differentiability of
dynamical functions makes in non-inertial coordinate
system; furthermore, if the moment of force depends
on the angular velocity then in is present in the linear
form on the angular velocity and in the motion equa-
tions.

The unperturbed motion is defined by the equali-
ties

α(t) ≡ 0, ω(t) ≡ 0. (1)

Therefore, we use the functionyN (α, ω) for small
(α, ω) in the form

yN = ∆(kα− hω), (2)

wherek andh are the certain constants. Because the
geometrical symmetry of the body (which ensuring
evenness of functions), we can ignore the dependence
of s onα.

The linearized model of the force medium action
contains three parameterss = s1, k, h, which are de-

termined by the plate form in the plan. The first of
these parameters, the coefficients, is dimensional.
The parametersk andh are dimension-free because
of the method of their introduction.

Note that the quantitiess and k can be found
experimentally by using weight measurements in de-
vices of the hydro- or aerodynamic tubes type. In [11],
there is also the information about the theoretical find-
ing of these quantities for separate plate forms. This
information allows us to assume thatk > 0. As for
the parameterh (which introduces into the system the
dependence of the moment with respect to the body
angular velocity), even the very necessity of its intro-
duction to the model is not a priori obvious.

To study the properties of the motion of the
classes of bodies considered, in Institute of Mechan-
ics of M. V. Lomonosov Moscow State University (see
[11, 12]), one carried out the experiments in registra-
tion of the motion of homogeneous circular cylinders
in the water. The experiment allows one to make sev-
eral important conclusions.

First: the rectilinear stationary free body drag (the
unperturbed motion in the water) is unstable at least
with respect to the angle of attack and the angular ve-
locity. Owing to the experiment, it becomes possible
to find the dimension-free parametersk andh of the
medium action on a rigid body.

The secondof them is as follows: in modelling
the medium action on the body, it is necessary to take
account of the additional parameter characterizing the
rotational derivative of the moment of the hydro- or
aerodynamical forces with respect to the body angu-
lar velocity. This parameter introduces the dissipation
into the system.

In certain cases, the value of the damping moment
coefficient under the body motion in the water was al-
ready estimated in [13]. This estimate confirms the
instability of the body rectilinear motion in the water.
Purely formally, increasing the value of the damping
coefficient, we can attain the stability of a motion, but
it is difficult to ensure this stability in reality. The rigid
body rectilinear motion is stable in certain media (for
example in the clay), as the experiment shows. Possi-
bly, this stability is attained owing to the existence of a
considerable damping from the medium in the system
or for the existence of forces tangent to the plate.

Note that the unperturbed motion may also be
calledrectilinear translational deceleration.

The position of the body on the plane is specified
by the coordinates(x0, y0) of the pointD and by an
angleϕ. The polar coordinates(v, α) of the tip of the
velocity vector of the pointD and the algebraic value
of the projection of the angular velocityΩ are related
to the variables(ẋ0, ẏ0, ϕ̇, ϕ) by the nonintegrable re-



lations:

ϕ̇ = Ω, ẋ0 = v cos(α + ϕ), ẏ0 = v sin(α + ϕ). (3)

Thus, the phase state of the system is determined
by the functions

(v, α, Ω, x0, y0, ϕ),

and the first three quantities being considered quasi-
velocities.

Since the kinetic energy of the body and the gen-
eralized forces do not depend on its position on the
plane, the coordinates(x0, y0, ϕ) are cyclic, which re-
duces the order of the system of equations of motion.

The equations of motion of the center of mass (for
the projections onto the body axesDxy) and the an-
gular momentum equations in the König frame form
a closed system of differential equations in the three-
dimensional phase space of quasi-velocities (σ = DC
andI is the central moment of inertia; differentiation
is with respect to time)

v̇ cosα−α̇v sinα−Ωv sinα+σΩ2 = −s(α)v2

m
, (4)

v̇ sinα + α̇v cosα + Ωv cosα− σΩ̇ = 0, (5)

IΩ̇ = yN (α, ω)s(α)v2, ω ∼= ∆Ω
v

. (6)

Systems (3), (4)–(6) form a complete system
of equations to describe the quasistationary plane-
parallel motion of a rigid body in a resisting medium.

4 Medium Interaction Functions De-
pendency on Angular Velocity of
the Body

The dynamic system (4)–(6) includes the functions
yN (α, ω) and s(α), which define the action of the
medium on the body. The functionyN (compare with
(2)), except of angle of attackα, depends on the re-
duced angular velocityω. In particular, if we neglect
the latter dependence on the angular velocity (which
is the so-calledelementary suggestionon the medium
interaction functions), thenyN is a function of the an-
gle of attack only:yN = y(α), and its dependence on
the unique argument can be determined by using the
experimental information about the properties of the
streamline flow around [11]. Further, in this casef, we
can apply the method of “submersion” of the problem
in a more general class of problems.

But the objective of this section is the account
of such an influence for the rotational derivatives of

the moment with respect to the body angular velocity
components. For this account, it takes the introducing
in the medium interaction functions the additional ar-
guments, which is a nontrivial modeling problem, in
principle. As already mentioned, in this work we in-
troduce the angular velocity as an argument into the
function yN only, and neglect of this introducing in
reduced coefficients.

By analogy with (2), we consider the valueyN in
the following form:

yN (α, ω) ∼= yN (α, Ω/v) = y(α)− HΩ
v

, (7)

furthermore, by the results of experiment (see [5]),
H > 0.

Then the Eq. (6) has the following form:

IΩ̇ = F (α)v2 −Hs(α)Ωv, F (α) = y(α)s(α). (8)

The system (4), (5), (8) contains the functions
F (α), s(α), the explicit forms of which we are not
able to describe analytically even for the bodies of a
simple form. Up to the present, because of complex-
ity, we use the method of “submersion” of this prob-
lem in a more general class of problems which takes
into account the qualitative properties of the functions
F (α), s(α) only.

The S. A. Chaplygin’ result (in studying the
plane-parallel flow around of a plane plate of infinite
length by a homogeneous medium flow, see [5, 6])
at finding the medium interaction functionsy(α) and
s(α) analytically, is the reference result for us:

y(α) = A sinα ∈ {y}, A = y′(0) > 0, (9)

s(α) = B cosα ∈ {s}, B = s(0) > 0. (10)

The result of S. A. Chaplygin helps us to construct
the functional classes{y} and{s}. Combining Eqs.
(9) and (10) with the experimental information about
the streamline flow around properties [7], we describe
formally the given classes. They consist of sufficiently
smooth2π-periodic (y(α) is odd ands(α) is even)
functions satisfying the following conditions:y(α) >
0 for α ∈ (0, π), and, moreover,

y′(0) > 0, y′(π) < 0 (11)

(the function class{y} = Y ); s(α) > 0 for α ∈
(0, π/2), s(α) < 0 for α ∈ (π/2, π), and, moreover,

s(0) > 0, s′(π/2) < 0 (12)

(the function class{s} = Σ). Bothy ands change the
sign under the replacement ofα onα + π. Therefore,

y ∈ Y, s ∈ Σ. (13)



In what follows, there rises the product
It follows from the conditions listed above that

functionF (introduced in (8)) is a sufficiently smooth
oddπ-periodic function satisfying the following con-
ditions:F (α) > 0 for α ∈ (0, π/2),

F ′(0) > 0, F ′(π/2) < 0 (14)

(the function class{F} = Φ).
In particular, the analytic function

F = F0(α) = AB sinα cosα ∈ Φ, (15)

AB = y′(0)s(0),

is also a typical representative of the function classΦ
arisen.

In connection with the noted in [9] instability of
the perturbed motion, we can arise the following ques-
tion: are whether there exist the (bounded) finite-
amplitude angular oscillations of the body’s axis of
symmetry?

Let formulate the more general question: is
whether there exists a pair of functionsy ands such
that equation0 < α(t) < α∗ < π/2 holds for certain
solution of the dynamical part of the motion equations
beginning from the certain momentt = t1?

As shown in [11], under the elementary restric-
tion on the functionsyN ands, we have shown that for
a quasi-static description of the interaction between
the medium and the body, when the dynamical quan-
titiesyN ands depend only on the angle of attack, for
any admissible pair of obtained dynamical functions
y ands, in the whole range of finite angles of attack
(0 < α < π/2), there are no any the (bounded) finite-
amplitude angular oscillations in the system consid-
ered.

Thus, to attain a possible affirmative answer to the
principal question (arising above) of nonlinear anal-
ysis, in modelling the interaction of a body with a
medium, we take into account an additional depen-
dence of the moment on the reduced body angular ve-
locity, therefore, we use the Eq. (7) forH > 0. Fur-
thermore, under certain conditions, we expect a possi-
ble positive answer to this principal question.

Certainly, only the analysis of the equations of
motion in the neighborhood of unperturbed motion is
of practical importance since the lateral surface is wet-
ted at some critical angles of attack, which makes our
model invalid. And for bodies with different lateral
surfaces, however, the critical angles are generally dif-
ferent and unknown. Therefore, the entire range of
angles has to be examined.

Thus, to study a plane-parallel flow past a plate,
use is made of classes of dynamic systems defined in
terms of a pair of medium interaction functions, which
considerably complicates the qualitative analysis.

5 Free Deceleration of a Rigid Body
in a Resisting Medium

Similar to the choice of medium interaction functions,
we define the dynamic functionss andyN in the sys-
tem (4)–(6) in the form (7), (13). Therefore, in the
system the additional damping (but in the certain do-
mains of the phase space and dispersing) moment of a
nonconservative force is present in considered system
as before.

As before, introducing new dimensionless phase
variable and differentiation by the formulas

Ω = n0vω, < · >= n0v <′>, (16)

system (4)–(6) is reduced to the following form:

v′ = vΨ(α, ω), (17)

α′ = −ω + µ2ω
2 sinα + µ2

In2
0
F (α) cos α−

− µ2

In0
Hωs(α) cosα + s(α)

mn0
sinα,

ω′ = F (α)
In2

0
+ µ2ω

3 cosα− µ2

In2
0
ωF (α) sinα−

− H
In0

ωs(α) + µ2

In0
Hω2s(α) sinα + s(α)

mn0
ω cosα,

(18)
Ψ(α, ω) = −µ2ω

2 cosα +
µ2

In2
0

F (α) sin α−

−µ2H

In0
ωs(α) sinα− s(α)

mn0
cosα,

herewith, we define the dimensionless parameters
µ1, b = µ2, H1 = µ3 as follows:

µ1 = 2
B

mn0
, b = σn0, H1 =

BH

In0
, (19)

n2
0 =

AB

I
.

Two latter equations (18) of system (17), (18)
form the independent second-order subsystem on the
phase cylinderS1{α mod2π} ×R1{ω}.

As before, we study the stability problem of triv-
ial solution of system (18), obviously, correspond-
ing to the rectilinear translational decelerationunper-
turbed motion.

To this end, we write the corresponding charac-
teristic equation near the origin of coordinates:

λ2 − λ [µ1 + µ2 − µ3] +

+
µ1

2

(
µ1

2
+ µ2 − µ3

)
+ 1 = 0. (20)

Proposition 1 Let the inequality (25) holds. Then for
µ3 > µ1 + µ2 (µ3 < µ1 + µ2) the trivial solution of
system (18) is asymptotically stable (is repulsing).



Figure 2: General pattern of trajectories of the system
(18) vector field near the origin

The general pattern of trajectories of the system
(18) vector field near the origin is represented in Fig.
2 (the domain1 corresponds the attracting point; the
domain2 corresponds the saddle point; and the do-
main3 corresponds the repulsing point).

To ascertain whether a limit cycle can be born
near the origin of coordinates, let us analyze the triv-
ial solution of system (18) for stability at thecritical
relation of the parameters:

µ3 = µ1 + µ2. (21)

To this end, we change phase variables as(α, ω) 7→
(a,w) in system (18):

α = a, ω =
(µ2 + µ1/2) a− ω0w

1 + µ1µ2 + µ2
2

, (22)

ω0 =

√
1− µ2

1

4
,

which leads it to the following system:

a′ = |ω0|w + C1a
3 + C2a

2w+
+C3aw2 + ō1((a2 + w2)3/2),

w′ = −|ω0|a + C4a
3 + C5a

2w+
+C6aw2 + C7w

3 + ō2((a2 + w2)3/2),

(23)

where

C1 =
µ2f3

6In2
0

− Hs2

2In0

µ2(µ2 + µ1/2)
1 + µ1µ2 + µ2

2

+
s2

2mn0
−

−µ2

2
− µ1

12
+

+
µ2(µ1 + µ2)(µ2 + µ1/2)

2(1 + µ1µ2 + µ2
2)

+
µ2(µ2 + µ1/2)2

(1 + µ1µ2 + µ2
2)2

,

C2 =
Hs2

2In0

µ2ω0

1 + µ1µ2 + µ2
2

− 2µ2(µ2 + µ1/2)ω0

(1 + µ1µ2 + µ2
2)2

−

− µ2(µ2 + µ1/2)ω0

2(1 + µ1µ2 + µ2
2)

,

C3 =
µ2ω

2
0

(1 + µ1µ2 + µ2
2)2

,

C4 = −
(

1 +
µ1µ2

2

)
f3

6In2
0ω0

+

+
Hs2

2In0

(µ2 + µ1/2)(1 + µ1µ2/2)
(1 + µ1µ2 + µ2

2)ω0
+

+
µ2 + µ1/2

2(1 + µ1µ2 + µ2
2)ω0

×

×
[(

µ2 +
µ1

3

)
− µ1µ2

6
(µ1 + µ2)

]
,

C5 = −Hs2

2In0

1 + µ1µ2 − µ2
1/2

1 + µ1µ2 + µ2
2

+
s2

2mn0
+

+
µ2(µ2 + µ1/2)2

(1 + µ1µ2 + µ2
2)2

+

+
2µ2(µ1 + µ2)2 − 4µ2 − µ1

4(1 + µ1µ2 + µ2
2)

,

C6 = −2µ2(µ2 + µ1/2)ω0

(1 + µ1µ2 + µ2
2)2

− µ2(µ1 + µ2)ω0

1 + µ1µ2 + µ2
2

,

C7 =
µ2ω

2
0

(1 + µ1µ2 + µ2
2)2

, s2 = s′′(0), f3 = F ′′′(0).

We now introduce the following auxiliary index
In. More concretely, the index constructed for the sys-
tem (23) has the form:

In = 6B1 + 2B3 + 2B5 + 6B7 =

=
µ2f3

In2
0

−Hs2

In0

1 + 3µ2
2 + 5µ1µ2/2− µ2

1/2
1 + µ1µ2 + µ2

2

+4
s2

mn0
+

+
µ2(µ1 + µ2)(µ2 + 2µ1) + 3µ2 − µ1

1 + µ1µ2 + µ2
2

. (24)

The following proposition gives the necessary
and sufficient conditions of asymptotic stability (in-
stability) of the origin for In6= 0.

Proposition 2 If In < 0 (In > 0) and the inequality

|µ3 − µ2| < 2 (25)

holds, then the origin of coordinates of the phase
planeR2{a,w} of system (23) ((18)) is a weak stable
(unstable) focus when thecritical parameter relation
µ3 = µ1 + µ2 is satisfied.



The condition (25) is necessary in this case, since
the origin of coordinates on the planeR2{a,w} will
be a (stable or unstable, strong or weak) focus only if
this condition is satisfied.

The following theorem is the corollary of well-
known theorem of Poincarè–Andronov–Hopf (see [1,
13]).

Theorem 3 Let inequality (25) holds for system (18).
Then:

1) If In < 0, then for any fixedµ1, µ2 there exist
δ1, δ2 > 0, such that the origin of coordinates is a
strong stable focus forµ3 ∈ (µ1 + µ2, µ1 + µ2 + δ1);
whenµ3 ∈ (µ1 + µ2 − δ2, µ1 + µ2), the origin is
a strong unstable focus surrounded by a stable limit
cycle that expands asµ3 decreases fromµ1 + µ2 to
µ1 + µ2 − δ2 as

√|µ1 + µ2 − µ3|.
2) If In > 0, then for any fixedµ1, µ2 there exist

δ1, δ2 > 0, such that the origin of coordinates is a
strong unstable focus forµ3 ∈ (µ1+µ2−δ2, µ1+µ2);
whenµ3 ∈ (µ1 + µ2, µ1 + µ2 + δ1), the origin is a
strong stable focus surrounded by an unstable limit
cycle that expands asµ3 increases fromµ1 + µ2 to
µ1 + µ2 + δ1 as

√|µ1 + µ2 − µ3|.

The conditionµ3 > µ1 + µ2 (µ3 < µ1 + µ2)
can easily be tested, in principle, since in each spe-
cific case, these parameters depend either on the first
derivatives with respect to the medium interaction
functions (yN , s) or on their values. And the con-
dition In < 0 (In > 0), however, is rather difficult
to test in each specific case, since not only the ex-
plicit expressions but also highest derivatives, even at
separate points, of the medium interaction functions
(yN , s) are unknown for each specific body.

6 Data Preparation for Execution of
Natural Experiments

6.1 Problem of Input of Homogeneous Cir-
cular Cylinders in Water

Further, let return to the problem of input of homoge-
neous circular cylinders in water (see [2]). The values
of physical parameters of cylinders, for which the rec-
tilinear translational deceleration (drag) can be stable
in principle, must be related by the relation

µ3 > µ1 + µ2 (26)

(see [4]) or

h
mD2

I
− 2− k

mσD

I
> 0. (27)

Herewith, if the value in the left-hand side of the
inequality (27) is equal to zero then we deal withcrit-
ical case.

Recall thatD is the diameter of the circular cylin-
der,σ is the distance from the center of mass of a body
to the front butt end, the constantsI, m are the mass-
inertia characteristics of cylinder, the constantsk and
h are the dimension-free parameters of medium action
on the cylinder (see [5]).

For the parametersk andh of the water action on
the body with the front circular butt end, the estimates
k = h = 0, 1 have already been accepted. Thus the
condition (27) allows to try to construct a rigid body
(a circular cylinder) for which the rectilinear transla-
tional deceleration (drag) could be stable. For this, it
takes to choose the parametersσ,D, I, m of a cylinder
Starting from the condition (27).

Analyzing the inequality (27), we can conclude
the following. The inertia-mass parameters of the ho-
mogeneous cylinders are such that inequality (27) is
not possible to satisfy forh = 0, 1. Indeed, for this
value (h = 0, 1), the left-hand side of (27) is repre-
sented in the form

F1(k, h,m, I, σ,D)|k=h=0,1 =

= h
mD2

I
− 2− k

mσD

I
|k=h=0,1 = F2(σ,D). (28)

the right-hand side of which, in turn, always assumes
the following negative value (with accuracy up to a
positive factor):

−3D2 − 12σD − 80σ2, (29)

which corresponds to the exponential instability of the
rectilinear translational drag; here, we take into ac-
count that principal moment of inertia of cylinder is
represented in the form

I = m

(
σ2

3
+

D2

16

)
. (30)

Furthermore, if we study the left-hand side of (27)
under variation of valueh then it can attain zero for
the following smallest critical valueh∗ only:

(
10h∗ − 5

4

)
− σ̄ − 20

3
σ̄2 = 0, σ̄ =

σ

D
, (31)

exceeding the earlier accepted valueh = 0, 1 and is
equal to

h∗ = 0, 125. (32)

The conditions (31) and (32) allow to draw the
following intermediate conclusion. The rectilinear
translational deceleration (drag) of the homogeneous
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Figure 3: Hollow cylinder (“cartridge”)

circular cylinder in the watercan not be stablewith
respect to the perturbations of the angle of attack and
angular velocity.

Nevertheless, we note that problem of stability
studied can be resolved in accordance with the esti-
mation on this coefficient accepted earlier:h = 0, 1.

6.2 Problem of Input of Hollow Circular
Cylinders in Water

Let set the problem for determining of geometrical
and inertia-mass parameters of the combined rigid
body, i.e., the hollow cylinder, for the possible attain-
ing of such a stability. Namely, let imagine a certain
hollow cylinder (a “cartridge”, Fig. 3), the geomet-
rical and inertia-mass characteristics of which, fur-
ther, will allow to satisfy the desired inequality for the
valueh = 0, 1 has been fixed us.

The combined rigid body studied is represented
by the front homogeneous part (a cylinder) of the di-
ameterD and the height2∆1 which can be continued
by the the lateral partitions of length2σ1 and width
∆2 (Fig. 3).

Let calculate the combined body parameters ap-
pearing in the inequality (27), i. e., the distance from
the center of mass of a body to the front circular butt
endσ, and also the (principal) radius of inertia of a
body ρ. These values are expressed through the fol-
lowing formulas:

σ =
∆2

1D
2 + 4σ1∆2(D −∆2)(σ1 + 2∆1)
∆2

1D
2 + 4σ1∆2(D −∆2)

, (33)

ρ2 =
∆2

1D
2+

∆2
1D

2 + 4σ1∆2(D −∆2)
×

×
{

4
3
∆2

1 +
D2

16
− 2∆1σ + σ2

}
+

+
4σ1∆2(D −∆2)

∆2
1D

2 + 4σ1∆2(D −∆2)
×

×
{

σ2
1

3
+

D2

8
− ∆2(D −∆2)

4
+

+
D4∆2

1(σ1 + ∆1)2

∆2
1D

2 + 4σ1∆2(D −∆2)

}
. (34)

We can use the complete Eqs. (33), (34), how-
ever, it has not solving importances, since it is suffi-
cient to accept the following admissions:

∆2
1 ≈ ∆2

2 ≈ ∆2∆2 ≈ 0. (35)

Further, we notice that all the geometrical param-
eters are dimension-free:

∆1 =
∆1

D
, ∆2 =

∆2

D
, σ1 =

σ1

D
, (36)

furthermore, for simplicity, we omit the bar every-
where.

Then the left-hand side of (27) under the admis-
sions (35) forh = 0, 1 is reduced to the following
equality in critical case:

∆1

(
−1

4

)
+ σ1∆2

(
7
2

)
− 4σ2

1∆2 = 0. (37)

Let find the critical valueσ∗1 of the dimension-free
length of the lateral partitions of the combined body.
It is equal to

σ∗1 =
7
16

+
1
8

√
49
4
− 4

∆1

∆2
. (38)

From Eq. (38), we see that the value∆1/∆2 can
oscillate in the following restrictions only:

0 <
∆1

∆2
<

49
16

= 3, 0625. (39)

Formally, for∆1 → 0 (the front butt end tends to
the infinite thin disk) the desired critical value tends
to

σ∗1 = 0, 875. (40)

In particular interesting case, for∆1 = ∆2 it can
be found in the form

σ∗1 =
1
16

(7 +
√

33) ≈ 0, 797, (41)

and also for∆1/∆2 → 49/16 the desired critical
value tends to

σ∗1 = 0, 4375. (42)

Thus, we can chose the valueσ∗1 in the restrictions

0.4375 ≤ σ∗1 ≤ 0.875, (43)

in spite of the fact that the expressions (40)–(42) deal
with the suitable cases only.



Also, in particular, if we accept∆1 = ∆2 = 0, 1
(i. e., if D = 30 mm, then∆1 = ∆2 = 3 mm); then
the dimensional length of the lateral partitions can be
equal to2σ1 ≈ 1, 6D ≈ 47, 8 mm, and the complete
critical length of all the combined body is equal to
47, 8 + 6 ≈ 54 mm.

In conclusion we shall notice that if it needs to
“correct” the constant valueh of a medium action
on a body for the experiment execution, that the de-
sired expression for the valueσ∗1 will be represented
as follows. The linearized critical equality (37) will
be rewritten in the form

∆1

(
10h− 5

4

)
+ σ1∆2

(
40h− 1

2

)
− 4σ2

1∆2 = 0,

(44)
and the desired valueσ∗1 can be found from the equal-
ity

σ∗1 =
1
8

{(
40h− 1

2

)
+

+

√(
40h− 1

2

)2

+ 16
(

10h− 5
4

)
∆1

∆2



 . (45)

6.3 Possibilities of a Rigid Body Motion in
a Resisting Medium with Restricted An-
gles of Attack

As was mentioned in previous sections, if the parame-
ters of the problem allow the existence of critical case
(the left-hand side of the Eq. (27) is equal to zero),
then the rectilinear translational deceleration (drag) of
a body can be stable as well as unstable with respect
to the perturbations of the angle of attack and angular
velocity, in depending on the higher derivatives of the
medium action functionsyN ands.

There were found the sufficient conditions for
such stability as well as instability (see above), includ-
ing the inequalities with the higher derivatives of the
medium action functions. But the main difficulty is
because of it is not possible to measure these deriva-
tives in the explicit form in the experiment.

Let demonstrate how does it make possible to
study the behavior of a body nearby the rectilinear
translational deceleration (i.e., the stable as well as
instable angular oscillations) using the experimental
information, hereunder, estimating not explicitly the
higher derivatives of the medium action functions.

At the beginning we note that the following in-
equality guaranteing theoscillatestability as well as
instability, holds at least in the case of the products
which are offered above (it makes possible to variate
the mass of a body making the products from the met-

als of the different density):

DIρ0

m2
<

8k

cxπ
, (46)

where we add the following parameters to the known
ones:ρ0 is the density of the fluid (it is the water in
this case),cx = 0, 82 is the dimension-free coefficient
of frontal resistance.

Indeed, in the system SGS the inequality (46) is
equivalent toDρ2/m < 0, 31, [m] = g, [D] = [ρ] =
sm, whereρ is the (principal) radius of inertia express-
ing by the formula (34).

Further, it is necessary to obtain the information
about not less thanthree semi-oscillations (i.e., one
and half periods of the oscillations) with the ampli-
tudesa1, a2, a3 during the experiment execution in the
case of oscillated character of the motion. Using the
parameter values which are close to the critical case,
we have two conclusions on the stability of the key
regime.

For the beginning we give an important remark
on the consequent changes of the values of amplitudes
a1, a2, a3 measuring in the experiment.

Remark 4 The sequence of the ratio of the values
a1, a2, a3, . . .

a2

a1
,
a3

a2
, . . . (47)

(hereinafter, if it is possible to measure not three
semi-oscillations but one more ones) is able to deter-
mine the character of the oscillate process in majority.
Also, if the values

a1, a2, a3, . . . (48)

look like the increasing (decreasing) geometric pro-
gression (in particular, the relationsa2/a1, a3/a2 are
equal approximately), then we can confirm the suffi-
ciently quick growing (fading) of the angular oscilla-
tions with share of confidence. And if the values (48)
increase, and its ratioa2/a1, a3/a2, . . . (see Eq. (47))
decrease explicitly, then we should say about possible
transition to the angular oscillations of the bounded
amplitude.

I. Let we observe the stable oscillations with re-
spect to the angle of deviation during the natural ex-
periment execution with the parameters correspond-
ing to thecritical case. Then, under the small de-
creasing of the body longitudal length (see a sample
1 below), one can appear the small fading of the an-
gular oscillations (Fig. 4).

Under the small increasing of the body longitudal
length (see a sample 2 below), we should wait the in-
creasing of the angular oscillations, and, in sequel, can
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Figure 4:

longitudal offset

angular oscillations

Figure 5:

observe the stable auto-oscillations of the body (Fig.
5). Herewith, it takes to pay attention on the ampli-
tude variation velocity of the oscillations (see Remark
4).

Furthermore, executing the experiment again for
the product from the sample 2 for sufficiently big per-
turbations of the initial angle of attack and (or) an-
gular velocity, it makes possible the transition to the
stable angular self-oscillations with the finite ampli-
tudes (Fig. 6) which are similar to the previous case
in Fig. 5.

Sample 1: the longitudal length of a body is equal
to 50 < 54 (mm).

Sample 2: the longitudal length of a body is equal
to 60 > 54 (mm).

II. Let we observe the growth of the angular sta-
ble oscillations during the natural experiment execu-
tion with the parameters corresponding to thecritical
case. Then, under the small decreasing of the body
longitudal length (see a sample 1 below), we can also
observe the stable oscillations of the bounded ampli-
tude (i. e., the transition from the unstable angular
auto-oscillations of the body, Fig. 7). Herewith, it
takes to pay attention on the amplitude variation ve-
locity of the oscillations (see Remark 4).

Furthermore, executing the experiment again for
the product from the sample 1 for the finite pertur-
bations of the initial angle of attack and (or) angu-
lar velocity, it makes possible the transition from the
unstable angular self-oscillations to its growth (Fig.
8). And for the small increasing of the body longitu-
dal length (see a sample 2 above) we should wait the
growth of the angular oscillations (Fig. 9).

longitudal offset

angular oscillations

Figure 6:

longitudal offset

angular oscillations

Figure 7:

7 Conclusions

Under the studying of model considered, we find the
sufficient conditions of the asymptotic stability of one
of the key regime (rectilinear translational deceler-
ation). In application to the homogeneous circular
cylinders, we represent the concrete estimations on its
inertia-mass characteristics, herewith, we take into ac-
count the results of the experiments executing earlier,
including the results in obtaining of the dimension-
free parameters of the water action on the cylinders.

In this work, we also show that under the certain
conditions on the higher derivatives of the medium
action functions (the arm of the action force and the
coefficient of resistance) it makes possible the pres-
ence in the system the stable as well as unstable auto-
oscillating regimes of motion. Therefore, the mea-
surement of higher derivatives of these medium ac-
tion functions is the resistless difficulty, since for ev-
ery concrete the body, not only the explicit form, but
even the signs of higher derivatives are not known in
the separate points of such functions.

Under the process of application of the meth-
ods (which are obtained earlier) of studying of dis-
sipative dynamic systems of the certain forms aris-
ing in the problem on free deceleration, we obtain
the new multi-parameter family of the phase patterns
on two-dimensional cylinders of the quasi-velocities;
such family consists of the infinite set of topologically
nonequivalent patterns changing its topological type
by the degenerate way under the variation of the sys-
tem parameters. This family obtained possesses the
stable as well as unstable self-oscillatory regimes in
the finite range of the angle of attack. Herewith, the
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domain of the physical parameters is the set of the fi-
nite measure in all infinite-measured space of the sys-
tem parameters, therefore, the patterns obtained are
the typical.

The obtained results allow to construct the hollow
circular cylinders (i. e., “the cartridge case”), the use
of which can provide the necessary stability under the
execution of the additional natural experiments.
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