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Abstract: We systematize some results on the study of the equations of plane-parallel motion of symmetric fixed
rigid bodies–pendulums located in a nonconservative force fields. The form of these equations is taken from the
dynamics of real fixed rigid bodies placed in a homogeneous flow of a medium. In parallel, we study the problem
of a plane-parallel motion of a free rigid body also located in a similar force fields. Herewith, this free rigid body
is influenced by a nonconservative tracing force; under action of this force, either the magnitude of the velocity
of some characteristic point of the body remains constant, which means that the system possesses a nonintegrable
servo constraint, or the center of mass of the body moves rectilinearly and uniformly; this means that there exists
a nonconservative couple of forces in the system.
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1 Model assumptions

Let consider the homogeneous flat plateAB symmet-
rical relative to the plane which perpendicular to the
plane of motion and passing through the holderOD.
The plate is rigidly fixed perpendicular to the tool
holderOD located on the cylindrical hingeO, and it
flows about homogeneous fluid flow. In this case, the
body is a physical pendulum, in which the plateAB
and the pivot axis perpendicular to the plane of mo-
tion. The medium flow moves from infinity with con-
stant velocityv = v∞ 6= 0. Assume that the holder
does not create a resistance.

We suppose that the total forceSof medium flow
interaction is parallel to the holder, and pointN of
application of this force is determined by at least the
angle of attackα, which is made by the velocity vector
vD of the pointD with respect to the flow and the
holder, and also the reduced angular velocity

ω ∼= lΩ
vD

, vD = |vD|

(l is the length of the holder,Ω is the algebraic value
of a projection of the pendulum angular velocity to the
axle hinge). Such conditions arise when one uses the
model of streamline flow around plane bodies [1, 2].

Therefore, the forceS is directed along the normal
to the plate to its side, which is opposite to the direc-
tion of the velocityvD, and passes through a certain

pointN of the plate, which is displaced from the point
D forward with respect to the flow (see also [1, 3]).

The vector

e =
OD
l

(1)

determines the orientation of the holder. Then

S = −s(α)v2
De, (2)

where
s(α) = s1(α)signcosα, (3)

and the resistance coefficients1 ≥ 0 depends only on
the angle of attackα. By the plate symmetry proper-
ties with respect to the pointD, the functions(α) is
even.

Let Dx1x2 = Dxy be the coordinate system
rigidly attached to the body, herewith, the axisDx =
Dx1 has a direction vectore (see (1)), and the axis
Dx2 = Dy has the same direction with the vector
DA.

The space of positions of this physical pendulum
is the circle (one-dimensional sphere)

S1{ξ ∈ R1 : ξ mod2π}, (4)

and its phase space is the tangent bundle of a circle

T∗S1{(ξ̇; ξ) ∈ R2 : ξ mod2π}, (5)



i.e., two-dimensional cylinder.
To the valueΩ, we put in correspondence the

skew-symmetric matrix

Ω̃ =

(
0 −Ω
Ω 0

)
, Ω̃ ∈ so(2). (6)

The distance from the centerD of the plate to the
center of pressure (the pointN ), has the form

|rN | = rN = DN

(
α,

lΩ
vD

)
, (7)

where
rN = {0, x2N} = {0, yN}

in systemDx1x2 = Dxy.
Immediately, we note that the model used to de-

scribe the effects of fluid flow on fixed pendulum is
similar to the model constructed for free body and,
in further, takes into account of the rotational deriva-
tive of the moment of the forces of medium influence
with respect to the pendulum angular velocity (see
also [3]). An analysis of the problem of the physi-
cal pendulum in a flow will allow to find the qualita-
tive analogies in the dynamics of partially fixed bodies
and free ones.

2 Set of dynamical equations in Lie
algebra so(2)

If I is a central moment of inertia of a rigid body–
pendulum then the general equation of motion has the
following form:

IΩ̇ = DN

(
α,

lΩ
vD

)
s(α)v2

D, (8)

since the moment of the medium interaction force
equals the determinant of the following auxiliary ma-
trix: (

0 x2N

−s(α)v2
D 0

)
, (9)

where
{−s(α)v2

D, 0}
is the decomposition of the medium interaction force
S in the coordinate systemDx1x2.

Since the dimension of the Lie algebra so(2) is
equal to 1, the single equation (8) is a group equations
on so(2), and, simply speaking, the motion equation.

We see, that in the right-hand side of Eq. (8), first
of all, it includes the angle of attack, therefore, this
equation is not closed. In order to obtain a complete
system of equations of motion of the pendulum, it is
necessary to attach several sets of kinematic equations
to the dynamic equation on the Lie algebra so(2).

3 First set of kinematic equations

In order to obtain a complete system of equations of
motion, it needs the set of kinematic equations which
relate the velocities of the pointD (i.e., the formal
center of the plateAB) and the over-running medium
flow:

vD = vD · iv(α) = Ω̃

(
l
0

)
+ (−v∞)iv(−ξ), (10)

where

iv(α) =

(
cosα
sinα

)
. (11)

The equation (10) expresses the theorem of addi-
tion of velocities in projections on the related coordi-
nate systemDx1x2.

Indeed, the left-hand side of Eq. (10) is the veloc-
ity of the pointD of the pendulum with respect to the
flow in the projections on the related with the pendu-
lum coordinate systemDx1x2. Herewith, the vector
iv(α) is the unit vector along the axis of the vector
vD. The vectoriv(α) is the image of the unit vector
along the axisDx1, rotated around the vertical (the
axisDx3) by the angleα and has the decomposition
(11).

The right-hand side of the Eq. (10) is the sum
of the velocities of the pointD when you rotate the
pendulum (the first term), and the motion of the flow
(the second term). In this case, in the first term, we
have the coordinates of the vectorOD = {l, 0} in the
coordinate systemDx1x2.

We explain the second term of the right-hand side
of Eq. (10) in more detail. We have in it the coordi-
nates of the vector(−v∞) = {−v∞, 0} in the immov-
able space. In order to describe it in the projections
on the related coordinate systemDx1x2, we need to
make a (reverse) rotation of the pendulum at the an-
gle (−ξ) that is algebraically equivalent to multiply-
ing the value(−v∞) on the vectoriv(−ξ).

Thus, the first set of kinematic equations (10) has
the following form in our case:

vD cosα = −v∞ cos ξ,
vD sinα = lΩ + v∞ sin ξ.

(12)

4 Second set of kinematic equations

We also need a set of kinematic equations which re-
late the angular velocity tensor̃Ω and coordinateṡξ, ξ
of the phase space (5) of pendulum studied, i.e., the
tangent bundleT∗S1{ξ̇; ξ}.

We draw the reasoning style allowing arbitrary di-
mension. The desired equations are obtained from the



following two sets of relations. Since the motion of
the body takes place in a Euclidean spaceEn, n = 2
formally, at the beginning, we express the tuple con-
sisting of a phase variableΩ, through new variablez1

(from the tuplez):

Ω = z1. (13)

Then we substitute the following relationship in-
stead of the variablez:

z1 = ξ̇. (14)

Thus, two sets of Eqs. (13) and (14) give the sec-
ond set of kinematic equations:

Ω = ξ̇. (15)

We see that three sets of the relations (8), (12),
and (15) form the closed system of equations.

These three sets of equations include the follow-
ing two functions:

rN = DN

(
α,

lΩ
vD

)
, s(α). (16)

In this case, the functions is considered to be depen-
dent only onα, and the functionrN = DN may de-
pend on, along with the angleα, generally speaking,
the reduced angular velocityω ∼= lΩ/vD.

5 Problem on free body motion un-
der assumption of tracing force

Parallel to the present problem of the motion of the
fixed body, we study the plane-parallel motion of
the free symmetric rigid body with the frontal plane
butt-end (one-dimensional plateAB) in the resistance
force fields under the quasi-stationarity conditions
[4, 5] with the same model of medium interaction.

If (v, α) are the polar coordinates of the velocity
vector of the certain characteristic pointD of the rigid
body (D is the center of the plateAB), Ω is the value
of its angular velocity,I, m are characteristics of iner-
tia and mass, then the dynamical part of the equations
of motion in which the tangent forces of the interac-
tion of the body with the medium are absent, has the
form

v̇ cosα− α̇v sinα− Ωv sinα + σΩ2 =
Fx

m
,

v̇ sinα + α̇v cosα + Ωv cosα− σΩ̇ = 0, (17)

IΩ̇ = yN

(
α,

Ω
v

)
s(α)v2,

where

Fx = −S, S = s(α)v2, σ = CD, (18)

in this case (
0, yN

(
α,

Ω
v

))
(19)

are the coordinates of the pointN of application of
the forceS in the coordinate systemDx1x2 = Dxy
related to the body.

The first two equations of the system (17) de-
scribe the motion of the center of a mass in the
two-dimensional Euclidean planeE2 in the projec-
tions on the coordinate systemDx1x2. In this case,
Dx1 = Dx is the perpendicular to the plate passing
through the center of massC of the symmetric body
andDx2 = Dy is an axis along the plate. The third
equation of the system (17) is obtained from the the-
orem on the change of the angular moment of a rigid
body in the projection on the axis perpendicular to the
plane of motion.

Thus, the direct product

R1 × S1 × so(2) (20)

of the two-dimensional cylinder and the Lie algebra
so(2) is the phase space of third-order system (17) of
the dynamical equations. Herewith, since the medium
influence force dos not depend on the position of the
body in a plane, the system (17) of the dynamical
equationsis separated from the system of kinematic
equationsand may be studied independently (see also
[2, 6]).

5.1 Nonintegrable constraint

If we considera more general problemon the motion
of a body under the action of a certain tracing forceT
passing through the center of mass and providing the
fulfillment of the equality

v ≡ const, (21)

during the motion (see also [7, 8]), thenFx in system
(17) must be replaced by

T − s(α)v2. (22)

As a result of an appropriate choice of the magni-
tudeT of the tracing force, we can achieve the fulfill-
ment of Eq. (21) during the motion [9]. Indeed, if we
formally express the valueT by virtue of system (17),
we obtain (forcosα 6= 0):

T = Tv(α, Ω) = mσΩ2+



+s(α)v2
[
1− mσ

I
yN

(
α,

Ω
v

)
sinα

cosα

]
. (23)

This procedure can be viewed from two stand-
points. First, a transformation of the system has oc-
curred at the presence of the tracing (control) force in
the system which provides the corresponding class of
motions (21). Second, we can consider this procedure
as a procedure that allows one to reduce the order of
the system. Indeed, system (17) generates an indepen-
dent second-order system of the following form:

α̇v cosα + Ωv cosα− σΩ̇ = 0,

IΩ̇ = yN

(
α, Ω

v

)
s(α)v2,

(24)

where the parameterv is supplemented by the con-
stant parameters specified above.

We can see from (24) that the system cannot be
solved uniquely with respect tȯα on the manifold

O =
{

(α, Ω) ∈ R2 : α =
π

2
+ πk, k ∈ Z

}
(25)

Thus, formally speaking, the uniqueness theorem is
violated on manifold (25).

This implies that system (24) outside of the man-
ifold (25) (and only outside it) is equivalent to the fol-
lowing system:

α̇ = −Ω + σv
I

yN(α,Ω
v )s(α)

cos α ,

Ω̇ = 1
I yN

(
α, Ω

v

)
s(α)v2.

(26)

The uniqueness theorem is violated for system
(24) on the manifold (25) in the following sense: reg-
ular phase trajectories of system (24) pass through al-
most all points of the manifold (25) and intersect the
manifold (25) at a right angle, and also there exists
a phase trajectory that completely coincides with the
specified point at all time instants. However, these
trajectories are different since they correspond to dif-
ferent values of the tracing force. Let us prove this.

As was shown above, to fulfill constraint (21), one
must choose the value ofT for cosα 6= 0 in the form
(23).

Let

lim
α→π/2

yN

(
α, Ω

v

)
s(α)

cosα
= L

(
Ω
v

)
. (27)

Note that|L| < +∞ if and only if

lim
α→π/2

∣∣∣∣
∂

∂α

(
yN

(
α,

Ω
v

)
s(α)

)∣∣∣∣ < +∞. (28)

For α = π/2, the necessary magnitude of the
tracing force can be found from the equality

T = Tv

(
π

2
, Ω

)
= mσΩ2 − mσLv2

I
. (29)

whereΩ is arbitrary.
On the other hand, if we support the rotation

around a certain pointW of the Euclidean planeE2

by means of the tracing force, then the tracing force
has the form

T = Tv

(
π

2
,Ω

)
=

mv2

R0
, (30)

whereR0 is the distanceCW .
Generally speaking, Eqs. (29) and (30) define

different values of the tracing forceT for almost all
points of manifold (25), and the proof is complete.

5.2 Constant velocity of the center of mass

If we considera more general problemon the motion
of a body under the action of a certain tracing forceT
passing through the center of mass and providing the
fulfillment of the equality (see also [10])

VC ≡ const (31)

during the motion (VC is the velocity of the center
of mass), thenFx in system (17) must be replaced by
zero since the nonconservative couple of the forces
acts on the body:

T − s(α)v2 ≡ 0. (32)

Obviously, we must choose the value of the trac-
ing forceT as follows:

T = Tv(α, Ω) = s(α)v2, T ≡ −S. (33)

The choice (33) of the magnitude of the tracing
forceT is a particular case of the possibility of separa-
tion of an independent second-order subsystem after a
certain transformation of the third-order system (17).

Indeed, let the following condition hold forT :

T = Tv(α, Ω) = τ1

(
α,

Ω
v

)
v2+

+τ2

(
α,

Ω
v

)
Ωv + τ3

(
α,

Ω
v

)
Ω2 = (34)

= T1

(
α,

Ω
v

)
v2.

We can rewrite system (17) as follows:

v̇ + σΩ2 cosα− σ sinα

[
v2

I
yN

(
α,

Ω
v

)
s(α)

]
=

=
T1

(
α, Ω

v

)
v2 − s(α)v2

m
cosα,



α̇v + Ωv − σ cosα

[
v2

I
yN

(
α,

Ω
v

)
s(α)

]
−

−σΩ2 sinα =

=
s(α)v2 − T1

(
α, Ω

v

)
v2

m
sinα, (35)

Ω̇ =
v2

I
yN

(
α,

Ω
v

)
s(α).

If we introduce the new dimensionless phase vari-
able and the differentiation by the formulas

Ω = n1vω, < · >= n1v <′>, n1 > 0, (36)

n1 = const,

then system (35) is reduced to the following form:

v′ = vΨ(α, ω), (37)

α′ = −ω + σn1ω
2 sinα+

+
[

σ
In1

yN (α, n1ω) s(α)
]
cosα−

−T1(α,n1ω)−s(α)
mn1

sinα,

ω′ = 1
In2

1
yN (α, n1ω) s(α)−

−ω
[

σ
In1

yN (α, n1ω) s(α)
]
sinα+

+σn1ω
3 cosα− ω T1(α,n1ω)−s(α)

mn1
cosα,





(38)

Ψ(α, ω) = −σn1ω
2 cosα+

+
[

σ

In1
yN (α, n1ω) s(α)

]
sinα+

+
T1 (α, n1ω)− s(α)

mn1
cosα.

We see that the independent second-order subsys-
tem (38) can be substituted into the third-order system
(37), (38) and can be considered separately on its own
two-dimensional phase cylinder.

In particular, if condition (33) holds, then the
method of separation of an independent second-order
subsystem is also applicable.

6 Case where the moment of noncon-
servative forces is independent of
the angular velocity

We take the functionrN as follows (the plateAB is
given by the equationx1N ≡ 0):

rN =

(
0

x2N

)
= R(α)iN , (39)

where

iN = iv

(
π

2

)
(40)

(see (11)).
In our case

iN =

(
0
1

)
. (41)

Thus, the equality

x2N = R(α) (42)

holds and shows that for the considered system, the
moment of the nonconservative forces is independent
of the angular velocity (it depends only on the angle
α).

And so, for the construction of the force field, we
use the pair of dynamical functionsR(α), s(α); the
information about them is of a qualitative nature. Sim-
ilarly to the choice of the Chaplygin analytical func-
tions (see [11]), we take the dynamical functionss and
R as follows: s

R(α) = A sinα, s(α) = B cosα, A, B > 0. (43)

6.1 Reduced systems

Theorem 1 The simultaneous equations (8), (12),
(15) under conditions (39), (43) can be reduced to the
dynamical system on the tangent bundle (5) of the one-
dimensional sphere (4).

Indeed, if we introduce the dimensionless param-
eter and the differentiation by the formulas

b∗ = ln0, n2
0 =

AB

I
, < · >= n0v∞ <′>, (44)

then the obtained equation has the following form:

ξ′′ + b∗ξ′ cos ξ + sin ξ cos ξ = 0. (45)

After the transition from the variablesz (about the
variablesz see (14)) to the variablesw

w1 = − 1
n0v∞

z1 − b∗ sin ξ, (46)

Eq. (45) is equivalent to the system

ξ′ = −w1 − b∗ sin ξ,
w′1 = sin ξ cos ξ,

(47)

on the tangent bundle

T∗S1{(w1; ξ) ∈ R2 : ξ mod2π} (48)

of the one-dimensional sphereS1{ξ ∈
R1 : ξ mod2π}.



6.2 General remarks on integrability of sys-
tem

In order to integrate the second-order system (47), we
have to obtain, generally speaking, one independent
first integral.

6.2.1 The system under the absence of a force
field

Let study the system (47) on the tangent bundle
T∗S1{w1; ξ} of the one-dimensional sphereS1{ξ}.
At the same time, we get out of this system the conser-
vative one. Furthermore, we assume that the function
(7) is identically equal to zero (in particular,b∗ = 0,
and also the coefficientsin ξ cos ξ in the second equa-
tion of system (47) is absent). The system studied has
the form

ξ′ = −w1, (49)

w′1 = 0. (50)

The system (49), (50) describes the motion of a
rigid body in the absence of an external force field.

Theorem 2 System (49), (50) has one analytical first
integral as follows:

Φ1(w1; ξ) = w2
1 = C1 = const. (51)

This first integral (51) states that as the external
force field is not present, it is preserved (in general,
nonzero) the component of the angular velocity of a
(“two-dimensional”) rigid body, precisely

Ω ≡ Ω0 = const. (52)

In particular, the existence of the first integral (51)
is explained by the equation

w2
1 =

1
n2

0v
2∞

Ω2 ≡ C1 = const. (53)

6.2.2 The system under the presence of a conser-
vative force field

Now let us study the system (47) under assumption
b∗ = 0. In this case, we obtain the conservative sys-
tem. Precisely, the coefficientsin ξ cos ξ in the second
equation of system (47) (unlike the system (49), (50))
characterizes the presence of the force field. The sys-
tem studied has the form

α′ = −w1, (54)

w′1 = sin ξ cos ξ. (55)

Thus, the system (54), (55) describes the mo-
tion of a rigid body in a conservative field of external
forces.

Theorem 3 System (54), (55) has one analytical first
integral as follows:

Φ1(w1; ξ) = w2
1 + sin2 ξ = C1 = const, (56)

The first integral (56) is an integral of the total
energy.

6.3 Transcendental first integral

We turn now to the integration of the desired second-
order system (47) (without any simplifications, i.e., in
the presence of all coefficients).

We put in correspondence to system (47) the fol-
lowing nonautonomous first-order equation:

dw1

dξ
=

sin ξ cos ξ

−w1 − b∗ sin ξ
. (57)

Using the substitutionτ = sin ξ, we rewrite Eq.
(57) in the algebraic form

dw1

dτ
=

τ

−w1 − b∗τ
. (58)

Further, introducing the homogeneous variable by
the formulaw1 = uτ , we reduce Eq. (58) to the fol-
lowing quadrature:

(−b∗ − u)du

1 + b∗u + u2
=

dτ

τ
. (59)

Integration of quadrature (59) leads to the follow-
ing three cases. Simple calculations yield the follow-
ing first integrals.

I. b2∗ − 4 < 0.

ln(1 + b∗u + u2)+

+
2b∗√
4− b2∗

arctg
2u + b∗√

4− b2∗
+ ln τ2 = const. (60)

II. b2∗ − 4 > 0.

ln |1 + b∗u + u2|−

− b∗√
b2∗ − 4

ln

∣∣∣∣∣
2u + b∗ +

√
b2∗ − 4

2u + b∗ −
√

b2∗ − 4

∣∣∣∣∣ + (61)

+ ln τ2 = const.

III. b2∗ − 4 = 0.

ln |u− 1|+ 1
u− 1

+ ln |τ | = const. (62)

In other words, in the variables(ξ, w1) the found
first integrals have the following forms:



I. b2∗ − 4 < 0.

[sin2 ξ + b∗w1 sin ξ + w2
1]×

× exp

{
2b∗√
4− b2∗

arctg
2w1 + b∗ sin ξ√

4− b2∗ sin ξ

}
= const.

(63)
II. b2∗ − 4 > 0.

[sin2 ξ + b∗w1 sin ξ + w2
1]×

×
∣∣∣∣∣
2w1 + b∗ sin ξ +

√
b2∗ − 4 sin ξ

2w1 + b∗ sin ξ −√
b2∗ − 4 sin ξ

∣∣∣∣∣
−b∗/

√
b2∗−4

=

(64)
= const.

III. b2∗ − 4 = 0.

(w1 − sin ξ) exp
{

sin ξ

w1 − sin ξ

}
= const. (65)

Therefore, in the considered case the system of
dynamical equations (47) has the first integral ex-
pressed by relations (63)–(65) (or (60)–(62)), which
is a transcendental function of its phase variables (in
the sense of complex analysis) and is expressed as a
finite combination of elementary functions.

Theorem 4 Three sets of relations (8), (12), (15) un-
der conditions (39), (43) possess the first integral (the
complete set), which is a transcendental function (in
the sense of complex analysis) and is expressed as a
finite combination of elementary functions.

6.4 Topological analogies

Now we present two groups of analogies related to
the system (17), which describes the motion of a free
body in the presence of a tracking force.

The first group of analogiesdeals with the case of
the presence the nonintegrable constraint (21) in the
system. In this case the dynamical part of the motion
equations under certain conditions is reduced to a sys-
tem (26).

Under onditions (39), (43) the system (26) has the
form

α′ = −ω + b sinα,
ω′ = sinα cosα,

(66)

if we introduce the dimensionless parameter, the vari-
able, and the differentiation analogously to (44):

b = σn0, n2
0 =

AB

I
, Ω = n0vω, (67)

< · >= n0v <′> .

Theorem 5 System (66) (for the case of a free body)
is equivalent to the system (47) (for the case of a fixed
pendulum).

Indeed, it is sufficient to substitute

ξ = α, w1 = ω, b∗ = −b. (68)

Corollary 6 1. The angle of attackα for a free
body is equivalent to the angle of body deviation
ξ of a fixed pendulum.

2. The distanceσ = CD for a free body corre-
sponds to the length of a holderl = OD of a
fixed pendulum.

3. The first integral of a system (66) can be auto-
matically obtained through the Eqs. (60)–(62)
(or (63)–(65)) after substitutions (68) (see also
[12]):

I. b2 − 4 < 0.

[sin2 α− bω sinα + ω2]×

× exp
{
− 2b√

4− b2
arctg

2ω − b sinα√
4− b2 sinα

}
=

(69)
= const.

II. b2 − 4 > 0.

[sin2 α− bω sinα + ω2]×

×
∣∣∣∣∣
2ω − b sinα +

√
b2 − 4 sinα

2ω − b sinα−√b2 − 4 sinα

∣∣∣∣∣
b/
√

b2−4

=

(70)
= const.

III. b2 − 4 = 0.

(ω − sinα) exp
{

sinα

ω − sinα

}
= const. (71)

The second group of analogiesdeals with the case
of a motion with the constant velocity of the center of
mass of a body, i.e., when the property (31) holds. In
this case the dynamical part of the motion equations
under certain conditions is reduced to a system (38).

Then, under conditions (31), (39), (43), and (67),
the reduced dynamical part of the motion equations
(system (38)) has the form of analytical system

α′ = −ω + b sinα cos2 α + bω2 sinα,
ω′ = sinα cosα− bω sin2 α cosα + bω3 cosα,

(72)



in this case, we choose the constantn1 as follows:

n1 = n0. (73)

If the problem on the first integral of the system
(66) is solved using Corollary 6, the same problem
for the system (72) can be solved by the following
theorem 7.

For this we introduce the following notations and
new variables (comp. with [13]):

C1 = 2− b, C2 = b > 0, C3 = −2− b < 0,

u1 = ω − sinα, v1 = ω + sin α, (74)

u1 = v1t1, v2
1 =

1
q1

,

then the problem on explicit form of the desired first
integral reduces to solving of the linear inhomoge-
neous equation:

dq1

dt1
= a1(t1)q1 + a2(t1), (75)

where

a1(t1) =
2(C3t1 + C2)
C3t21 − C1

, (76)

a2(t1) =
4C2t1

C3t21 − C1
.

The general solution of Eq. (75) has the following
form (see [1, 13]):

I. b < 2.

q1(t1) = k(t1)(−C3t
2
1 + C1)×

× exp



−

2b√
4− b2

arctg

√
2 + b

2− b
t1



 + const. (77)

II. b > 2.

q1(t1) = k(t1)(−C3t
2
1 + C1)×

×
∣∣∣∣∣

√−C1 +
√−C3t1√−C1 −
√−C3t1

∣∣∣∣∣
C2/

√
C1C3

+ const. (78)

III. b = 2.

q1(t1) = k(t1)t21 exp
{

1
t1

}
+ const, (79)

in this case,
I. b < 2.

k(t1) = − b

8
×

× exp
{

2b√
4− b2

[
2b√

4− b2
sin 2ζ − 2 cos 2ζ

]}
+

(80)

+const,

tgζ =

√
2− b

2 + b
t1.

II. b > 2.

k(t1) = ±|ζ|b/
√

b2−4∓

∓ b

b + 2
√

b2 − 4
|ζ|b/

√
b2−4+2 + const, (81)

t1 =

√
b− 2
b + 2

(
1− ζ

1 + ζ

)
.

III. b = 2.

k(t1) = −2
t1 + 1

t1
exp

{
− 1

t1

}
. (82)

Thus, Eqs. (77)–(82) allow us to find the desired
first integral of system (72) using the notations and
substitutions (74).

Theorem 7 The first integral of the system (72) is
a transcendental function of its own phase variables
and is expressed as a finite combination of elementary
functions.

Because of cumbersome character of form of the
first integral obtained, we represent this form in the
caseIII only:

exp
{

sinα + ω

sinα− ω

}
1− 4ω sinα + 4ω2

(ω − sinα)2
= C1 =

(83)
= const.

Theorem 8 The first integral of system (66) is con-
stant on the phase trajectories of the system (72).

Let us perform theproof for the caseb = 2. In-
deed, we rewrite the first integral (83) of system (72)
as follows:

exp
{

n0v sinα + Ω
n0v sinα− Ω

}
×

×n2
0v

2 − 2bn0vΩsinα + b2Ω2

(Ω− n0v sinα)2
= const. (84)

We see that the numerator of the second factor is
proportional to the square of the velocity of the center
of massVC of the body with constant coefficientn2

0.
But, by virtue of (31), this value is constant on trajec-
tories of the system (72). Therefore, the function

exp
{

n0v sinα + Ω
n0v sinα− Ω

}
V 2

C

(Ω− n0v sinα)2
= const

(85)



is also constant on these trajectories.
Further, let us raise the left-hand side of Eq. (85)

to the power(−1/2) and conclude that the following
function is constant on the trajectories of the system
(72):

exp
{

Ω + n0v sinα

2(Ω− n0v sinα)

}
(Ω− n0v sinα) = const.

(86)
And now, we divide Eq. (86) by

√
e and obtain

the function

exp
{

n0v sinα

Ω− n0v sinα

}
(Ω− n0v sinα) = const,

(87)
which is constant on the phase trajectories of the sys-
tem (72). But the first integral (87) is completely sim-
ilar to the first integral (71), as required.

Thus, we have the following topological and me-
chanical analogies in the sense explained above.

(1) A motion of a fixed physical pendulum on a
cylindrical hinge in a flowing medium (nonconserva-
tive force fields).

(2) A plane-parallel free motion of a rigid body in
a nonconservative force field under a tracing force (in
the presence of a nonintegrable constraint).

(3) A plane-parallel composite motion of a rigid
body rotating about its center of mass, which moves
rectilinearly and uniformly, in a nonconservative force
field.

7 Case where the moment of noncon-
servative forces depends on the an-
gular velocity

7.1 Dependence on the angular velocity

This section is devoted to dynamics of the two-
dimensional rigid body on the plane. This subsection
is devoted to the study of the case of the motion where
the moment of forces depends on the angular veloc-
ity. We introduce this dependence in the general case;
this will allow us to generalize this dependence both
to three-, and multi-dimensional bodies.

Let x = (x1N , x2N ) be the coordinates of the
point N of application of a nonconservative force
(interaction with a medium) on the one-dimensional
plate andQ = (Q1, Q2) be the components inde-
pendent of the angular velocity. We introduce only
the linear dependence of the functions(x1N , x2N ) =
(xN , yN ) on the angular velocity since the introduc-
tion of this dependence itself is not a priori obvious
(see [1, 3]).

Thus, we accept the following dependence:

x = Q + R, (88)

whereR = (R1, R2) is a vector-valued function con-
taining the angular velocity. Here, the dependence of
the functionR on the angular velocity is gyroscopic:

R =

(
R1

R2

)
=

= − 1
vD

(
0 −Ω
Ω 0

) (
h1

h2

)
, (89)

where(h1, h2) are certain positive parameters (comp.
with [2, 4]).

Now, for our problem, sincex1N = xN ≡ 0, we
have

x2N = yN = Q2 − h1
Ω
vD

. (90)

Thus, the functionrN is selected in the following
form (the plateAB is defined by the equationx1N ≡
0):

rN =

(
0

x2N

)
= R(α)iN − 1

vD
Ω̃h, (91)

where

iN = iv

(
π

2

)
, h =

(
h1

h2

)
, (92)

Ω̃ =

(
0 −Ω
Ω 0

)

(see (6), (11)).
In our case

iN =

(
0
1

)
. (93)

Thus, the following relation

x2N = R(α)− h1
Ω
vD

(94)

holds, which shows that an additional dependence of
the damping (or accelerating in some domains of the
phase space) moment of the nonconservative forces is
also present in the system considered (i.e., the moment
depends on the angular velocity).

And so, for the construction of the force field, we
use the pair of dynamical functionsR(α), s(α); the
information about them is of a qualitative nature. Sim-
ilarly to the choice of the Chaplygin analytical func-
tions (see [1, 5]), we take the dynamical functionss
andR as follows:

R(α) = A sinα, s(α) = B cosα, A, B > 0. (95)



7.2 Reduced systems

Theorem 9 The simultaneous equations (8), (12),
(15) under conditions (91), (95) can be reduced to the
dynamical system on the tangent bundle (5) of the one-
dimensional sphere (4).

Indeed, if we introduce the dimensionless param-
eters and the differentiation by the formulas

b∗ = ln0, n2
0 =

AB

I
, H1∗ =

h1B

In0
, (96)

< · >= n0v∞ <′>,

then the obtained equation has the following form:

ξ′′ + (b∗ −H1∗)ξ′ cos ξ + sin ξ cos ξ = 0. (97)

After the transition from the variablesz (about the
variablesz see (14)) to the variablesw

w1 = − 1
1 + b∗H1∗

(
1

n0v∞
z1 + b∗ sin ξ

)
, (98)

Eq. (97) is equivalent to the system

ξ′ = −(1 + b∗H1∗)w1 − b∗ sin ξ,
w′1 = sin ξ cos ξ + H1∗w1 cos ξ.

(99)

7.3 Transcendental first integral

We put in correspondence to system (99) the follow-
ing nonautonomous first-order equation:

dw1

dξ
=

sin ξ cos ξ + H1∗w1 cos ξ

−(1 + b∗H1∗)w1 − b∗ sin ξ
. (100)

Using the substitutionτ = sin ξ, we rewrite Eq.
(100) in the algebraic form

dw1

dτ
=

τ + H1∗w1

−(1 + b∗H1∗)w1 − b∗τ
. (101)

Further, introducing the homogeneous variable by
the formulaw1 = uτ , we reduce Eq. (101) to the
following quadrature:

(−b∗ − (1 + b∗H1∗)u)du

1 + (b∗ + H1∗)u + (1 + b∗H1∗)u2
=

dτ

τ
. (102)

Integration of quadrature (102) leads to the fol-
lowing three cases. Simple calculations yield the fol-
lowing first integrals.

I. |b∗ −H1∗| < 2.

ln(1 + (b∗ + H1∗)u + (1 + b∗H1∗)u2)+

+
2b∗√

4− (b∗ −H1∗)2
×

×arctg
2(1 + b∗H1∗)u + (b∗ + H1∗)√

4− (b∗ −H1∗)2
+ ln τ2 =

(103)
= const.

II. |b∗ −H1∗| > 2.

1
1 + b∗H1∗

ln |1 + (b∗ + H1∗)u + (1 + b∗H1∗)u2|+

+ ln τ2−

− b∗
√

1 + b∗H1∗√
(b∗ −H1∗)2 − 4

×

× ln

∣∣∣∣∣
A +

√
(b∗ −H1∗)2 − 4

A−√
(b∗ −H1∗)2 − 4

∣∣∣∣∣ = (104)

= const,

A = 2(1 + b∗H1∗)3/2u + (b∗ + H1∗)
√

1 + b∗H1∗.

III. |b∗ −H1∗| = 2.

ln
∣∣∣∣u +

b∗ + H1∗
2(1 + b∗H1∗)

∣∣∣∣−

− b∗ −H1∗
2(1 + b∗H1∗)u + (b∗ + H1∗)

+ ln |τ | = (105)

= const.

In the variables(ξ, w1) the found first integrals
have the cumbersome character of their form. Never-
theless, we represent this form in the caseIII in the
explicit form:

(
w1 +

b∗ + H1∗
2(1 + b∗H1∗)

sin ξ

)
×

× exp
{

(−b∗ + H1∗) sin ξ

2(1 + b∗H1∗)w1 + (b∗ + H1∗) sin ξ

}
=

(106)
= const.

Therefore, in the considered case the system of
dynamical equations (99) has the first integral ex-
pressed by relations (103)–(105) (or, in particular, in
the caseIII (106)), which is a transcendental func-
tion of its phase variables (in the sense of complex
analysis) and is expressed as a finite combination of
elementary functions.

Theorem 10 Three sets of relations (8), (12), (15) un-
der conditions (91), (95) possess the first integral (the
complete set), which is a transcendental function (in
the sense of complex analysis) and is expressed as a
finite combination of elementary functions.



7.4 Topological analogies

Now we present two groups of analogies related to
the system (17), which describes the motion of a free
body in the presence of a tracking force.

The first group of analogiesdeals with the case of
the presence the nonintegrable constraint (21) in the
system. In this case the dynamical part of the motion
equations under certain conditions is reduced to a sys-
tem (26).

Under conditions (91), (95) the system (26) has
the form

α′ = −(1 + bH1)ω + b sinα,
ω′ = sinα cosα−H1ω cosα,

(107)

if we introduce the dimensionless parameters, the
variable, and the differentiation analogously to (44):

b = σn0, n2
0 =

AB

I
, H1 =

h1B

In0
, Ω = n0vω,

(108)
< · >= n0v <′> .

Theorem 11 System (107) (for the case of a free
body) is equivalent to the system (99) (for the case
of a fixed pendulum).

Indeed, it is sufficient to substitute

ξ = α, w1 = ω, b∗ = −b, H1∗ = −H1. (109)

Corollary 12 1. The angle of attackα for a free
body is equivalent to the angle of body deviation
ξ of a fixed pendulum.

2. The distanceσ = CD for a free body corre-
sponds to the length of a holderl = OD of a
fixed pendulum.

3. The first integral of a system (107) can be au-
tomatically obtained through the Eqs. (100)–
(102) (or (103)–(105)) after substitutions (109)
(see also [6, 7]).

In the variables(α, ω) the found first integrals
have the cumbersome character of their form. Nev-
ertheless, we represent this form in the caseIII in the
explicit form:

(
ω − b + H1

2(1 + bH1)
sinα

)
×

× exp
{

(b−H1) sinα

2(1 + bH1)ω − (b + H1) sin α

}
= (110)

= const.

The second group of analogiesdeals with the case
of a motion with the constant velocity of the center of
mass of a body, i.e., when the property (31) holds. In
this case the dynamical part of the motion equations
under certain conditions is reduced to a system (38).

Then, under conditions (31), (91), (95), (108) the
reduced dynamical part of the motion equations (sys-
tem (38)) has the form of analytical system

α′ = −ω + b sinα cos2 α+
+bω2 sinα− bH1ω cos2 α,

ω′ = sinα cosα− bω sin2 α cosα+
+bω3 cosα+

+bH1ω
2 sinα cosα−H1ω cosα,

(111)

in this case, we choose the constantn1 as follows:

n1 = n0. (112)

If the problem on the first integral of the system
(107) is solved using Corollary 12, the same problem
for the system (111) can be solved by the following
Theorem 13.

For this we introduce the following notations and
new variables (comp. with [8, 9]):

A1 = b
2 − bH1

2 − H1
2 ,

A2 = 1 + b
2 + bH1

2 + H1
2 > 0,

A3 = 1− b
2 + bH1

2 − H1
2 ,

u1 = ω − sinα, v1 = ω + sinα,
u1 = v1t1, v2

1 = 1
q1

,

(113)

then the problem on explicit form of the desired first
integral reduces to solving of the linear inhomoge-
neous equation:

dq1

dt1
= a1(t1)q1 + a2(t1), (114)

where

a1(t1) =
2(A2t1 −A1)

A2t21 + bH1t1 + A3
,

a2(t1) =
2b(−t1 + H1(t21 − 1)/4))

A2t21 + bH1t1 + A3
. (115)

The general solution of Eq. (114) has the follow-
ing form [10]:

I. |b−H1| < 2.

q1(t1) = k(t1)(A2t
2
1 + bH1t1 + A3)×

× exp

{
−2(b− bH1 −H1)√

4− (b−H1)2
B

}
, (116)

B = arctg

{
2 + b + bH1 + H1√

4− (b−H1)2
t1+



+
bH1√

4− (b−H1)2

}
.

II. |b−H1| > 2.

q1(t1) = k(t1)(A2t
2
1 + bH1t1 + A3)×

×
∣∣∣∣∣

√
4− (b−H1)2 + C√
4− (b−H1)2 − C

∣∣∣∣∣
(b−bH1−H1)/

√
4−(b−H1)2

,

(117)
C = (2 + b + bH1 + H1)t1 + bH1.

III. |b−H1| = 2.

q1(t1) = k(t1)
(

t1 +
bH1

2A2

)2

×

× exp
{

2(b−H1)
(2 + b + bH1 + H1)t1 + bH1

}
. (118)

To find a solution of the nonhomogeneous equa-
tions (114), (115), we must express the value ofk as
a function oft1, which is expressed as a finite combi-
nation of elementary functions.

Thus, Eqs. (116)–(118) allow to obtain the de-
sired first integral of the system (111) using the nota-
tions and substitutions (113).

Theorem 13 The first integral of the system (111) is
a transcendental function of its own phase variables
and is expressed as a finite combination of elementary
functions.

Because of cumbersome character of form of the
first integral obtained, we represent this form in the
caseIII only:

exp
{ −2(b−H1) sin α

2(1 + bH1)ω − (b + H1) sinα

}
×

× 1− 4ω sinα + 4ω2

(ω − 2 sin α/(b + H1))2
= C1 = const. (119)

Theorem 14 The first integral of system (107) is con-
stant on the phase trajectories of the system (111).

Let us perform theproof for the case|b−H1| = 2.
Indeed, we rewrite the first integral (119) as follows:

exp
{ −2n0v(b−H1) sin α

2(1 + bH1)Ω− n0v(b + H1) sin α

}
×

× n2
0v

2 − 4n0vΩsin α + 4Ω2

(Ω− 2n0v sinα/(b + H1))2
= const. (120)

We see that the numerator of the second factor is
proportional to the square of the velocity of the center

of massVC of the body with constant coefficientn2
0.

But, by virtue of (31), this value is constant on trajec-
tories of the system (111). Therefore, the function

exp
{ −2n0v(b−H1) sinα

2(1 + bH1)Ω− n0v(b + H1) sin α

}
×

× V 2
C

(Ω− 2n0v sinα/(b + H1))2
= const. (121)

Further, let us raise the left-hand side of Eq. (121)
to the power(−1/2) and conclude that the following
function is constant on the trajectories of the system
(111):

exp
{

n0v(b−H1) sin α

2(1 + bH1)Ω− n0v(b + H1) sin α

}
×

×(Ω− 2n0v sinα/(b + H1)) = const. (122)

And now, it is clear that the function (122) is
equivalent to the function (110), since in the caseIII
the following relation

(b + H1)2 = 4(1 + bH1) (123)

holds.
Thus, we have the following topological and me-

chanical analogies in the sense explained above.
(1) A motion of a fixed physical pendulum on a

cylindrical hinge in a flowing medium (nonconserva-
tive force fields under assumption of additional depen-
dence of the moment of the forces on the angular ve-
locity).

(2) A plane-parallel free motion of a rigid body
in a nonconservative force field under a tracing force
(in the presence of a nonintegrable constraint under
assumption of additional dependence of the moment
of the forces on the angular velocity).

(3) A plane-parallel composite motion of a rigid
body rotating about its center of mass, which moves
rectilinearly and uniformly, in a nonconservative force
field under assumption of additional dependence of
the moment of the forces on the angular velocity.
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