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Abstract: In this activity some hypotheses on the properties of a medium are embodied in 

the three-dimensional dynamic model of interaction of a body with a medium. All of the interaction 

of a medium with a body is concentrated on that part of the surface of the body which has the form of 

a convex plane region. Since the interaction is governed by the laws of jet flow. New integrable cases 

and families of phase portraits in the plane dynamics of rigid bodies are discovered. Certain model 

cases of the motion of rigid bodies in a resisting medium are qualitatively studied and integrated. The 

first integrals of corresponding systems are found; these integrals are transcendental functions and 

functions that can be expressed in terms of elementary functions. New families of multidimensional 

phase portraits in the spatial dynamics are found. The problem of the dynamically symmetrically fixed 

rigid body placed in the flow of an incoming medium is integrated.  

1. Introduction 

Dynamic model of interaction of a rigid body with resisting medium provided jet flow [1,2], 

considered in activity, not only allows successfully to transfer outcomes appropriate problems from 

plane dynamics of a rigid body interacting with the medium [3,4] and to receive their spatial analogs, 

but also to detect new cases of integrability till Jacob. Thus in some cases the integrals express 

through elementary functions. In activity the integrability of classical is shown in the problems about 

a spherical pendulum, located in a flow by filling of a medium, about spatial motion of a body at 

availability constraint, and also the mechanical and topological analogies are shown in the last two 

problems. 

The hypothesizes adduced in [3] and concerning of properties of a medium, have found the 

reflection in construction of spatial (3D) dynamic model of interaction of a rigid body with resisting 

medium. In this connection there is a capability of formalizing of the model suppositions and 

obtaining of a full system of ordinary differential equations. 



 

2. On Interaction  

All interaction of medium with a body is concentrated on that part of a surface of a body which has 

the shape of convex plane area P. 

As the interaction happens under the laws of jet flow the force S of this interaction is directed on 

a normal line to area and the point N of the acting of this force is determined only in one parameter — 

by an angle of attack α which is measured between vector of velocity v of a point D of a plate and 

external normal line in this point (straight line CD). The point D is the interception of the straight line 

CD (C — center of mass) that is perpendicular to plane P. Thus, DN = R(α).  

Size of force of resistance we shall accept as S = sv2, where v is the module of speed of a point D, 

and coefficient of resistance s is the function only of angle of attack: s = s(α).  

There is the additional force T, which acts on a body on the straight line CD. Let's name it as 

“force of a thrust”. The introduction of this force is used, as for maintenance of some specific classes 

of motions (thus T is the reaction of the possible (or probable) imposed constraint and in the 

methodical purposes, which pursue learning of interesting non-linear systems (having character of 

pendulum) arising at the reduction of the order. In case of absence external force T the body makes 

free braking (deceleration) in a resisting medium [3,4].  

Systems of coordinates connected to a body shall designate through Dxyz. The last coordinate 

system connected to a point D is selected such that the tensor of inertia in the given system has 

diagonal type: diag{A,B,C}. Mass distribution we shall accept by such that longitudinal principal axis 

of inertia coincides an axis CD (it is an axis Dx), and the axes Dy and Dz lie in a plane P and will 

derivate with the right of coordinate system. Moreover, we shall consider case dynamically 

symmetrical rigid body, i.e. the equality B = C is executed.  

3. Dynamical equations  

In this case for the description of a position of a body in 3D space it is possible to select the Cartesian 

coordinates ),,( 000 zyx  of a point D  and three angles ),,(  , which are determined similarly to 

classical navigational angles.  

By virtue of the theorem of motion of center of mass in space in projections on moving axes 

),,( zyx  and theorem of change of kinetic moment of rather these axes, we receive a full system of 

differential equations considered in dynamic space of quasivelocities  
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Here coordinates of a point N  in a system ),,( zyx eee  will accept as )),(),,(,0(  NN zy , 

where ,cos)(),(  RyN   ,sin)(),(  RzN     is the distance CD .  

 In a general dynamic system of the twelfth order by virtue of cyclic character of positional 

coordinates the splitting of independent subsystem of sixth order happens in a phase space of 

quasivelocities },,{}{},{ 312 rqpv   . Here ),,( v  are the spatial polar coordinates of the 

velocity of point D , ),,( rqp  is the projection of angular velocity to coordinate system connected 

with a body.  

4. Dynamically Symmetric Rigid Body with Constraint  

Dynamic equations of motion of a free rigid body at availability of servo constraint of a type 

constv   (plane version of the given problem also see in [3,4]) accept the first integral 
0pp   and 

look like  
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 The function in a dynamic system (1), (2) has the following properties: for qualitative description 

of its we use being available the experimental information on properties of jet flow [1,2].  

5. Main theorems  

Theorem 1. The dynamic system (1), (2) is equivalent (in trajectory sense) topologically to a system 

(1),(2) under such condition:  
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 At the beginning let's consider the capabilities of an integration of a system (1), (2) at a level 

00 p . At this field of vectors of a system (1) has three kinds of symmetry:  

 1) A central symmetry. Such symmetry near the points kk ),0,0,( , in space },,{ 12

3 zz  

arise for the reason that the vector field in coordinates },,{ 12 zz  changes the sign at replacement 
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 2) Some mirror symmetry (SMS). Such symmetry is related to the planes  ii ,  where 
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2z - and 
1z -making components change the sign;  

 3) by a symmetry is related to the planes }0:),,{( 1

3

12  zzz , namely, 
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 In activities [3,4] the first integral of a system from plane dynamics expressed through 

elementary functions.  

 Theorem 2. The system (1) at 00 p  has a full set of the first transcendental integrals. The 

system (1), (2) at 00 p  also is quite integrated till Jacob, two from which first integral are 

integrals of systems (1) at 00 p  and third is analytical function.  

The meromorphic integral of a system (1), (2) at 00 p  will look like  
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 As the system (1), (2) at 00 p  has a variable dissipation and also is analytical, for its it is 

possible in an obvious kind to find two other additional integrals. The following identity is executed 
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 Additional the first integral of a systems found above being by transcendental function of state 

variables makes together with (4) a full set of the first integrals of a system (1) at 00 p . For the 

system (1), (2) at 00 p  the one more first integral is necessary.  



 

 Remark. Everywhere is higher instead of it is necessary to insert left-hand part of equality (4). 

 For search of the last integral of a system (1), (2) at 00 p  we shall remark, that as 
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Example. If 20 n  the equality (7) accept a following kind  
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In the last case, we speak about variable dissipation systems with zero mean. See above.  

4. Another Examples from Plane Dynamics of a Rigid Body Interacting with a Medium  

Consider systems also arising in the plane dynamics of a rigid body interacting with a resisting 

medium [3,4]. Since certain phase variables are cyclic, the general sixth-order system admits a 

separation of the independent subsystem of the third order. In turn, in this subsystem, by using the 

well-known technique, the system of the second order is isolated. Such systems have one property in 

common. Since, as a rule, variable dissipation systems with zero mean have additional symmetries; 

these systems have separatrices connecting hyperbolic saddle equilibrium states. That is why 

(absolutely) such systems cannot be structurally stable. Since deformations of such systems are only 

considered over a certain subset of all systems defined through a certain subclass of functions (right-

hand sides) that makes it possible to preserve all the symmetries in the system, the systems under 

consideration remain relatively rough in certain domains of parameters.  

Example 1. Consider systems of the following form on the two-dimensional cylinder  

)(,cos/)( 21  FAFA   , A1 > 0, A2 > 0,                   (8) 



 

under the following condition: F – smooth odd π-periodic function such that F’(0) > 0, F’(π/2) < 0, 

F(α) > 0 if )2/,0(   and F(α) < 0 if ),2/(  . Thus Q = {F}.  

Lemma 1. System (8) is relatively structurally stable. Moreover, any two systems of the form (8) are 

topologically equivalent.  

(a) For any F   Q, the phase portrait of system (8) is of one and the same topological type:  

 

Fig. 1  

(b) in every region of the phase cylinder (oscillatory and rotational) (see Fig. 1) the equivalence 

of its own is constructed; on the «key» separatrices, these equivalencies are «sewed».  

(c) For instance, in the oscillatory region (see Fig. 1), the equivalence is constructed as follows. 

We construct not only an equivalence, i.e., a homeomorphism h of the phase cylinder, but, what is 

more, the conjugacy. In the oscillatory domain, there exist only two singular points, (0,0) and (π,0) 

(the first of them is repelling, and the second is an attracting one). Thus, we consider two systems (8) 

for the function F1(α) and F2(α). The corresponding phase flows of the phase cylinder are denoted by 

tg1
 and tg2

. We require that the homeomorphism h take the origin to the origin. Consider a small 

circle S1 around the origin. It can be chosen transversal to both fields of systems (1) for F = F1(α) and 

F = F2(α), simultaneously. We define h(p) = p (accurate up to a linear contraction or dilation) for all 

1Sp  in such a way that )()( 1
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points on the circle S1; for F = Fk, the separatrices of the vector field of system (8) which emanate 

from the origin and enter the saddles (in the central strip) pass through them. If q is not the origin, 

then there exists a unique Rt  such that 1

1 )( Spqg t  . We set )()()( 122 qggpgqh ttt   . It is 

immediately seen that h is continuous and has a continuous inverse.  

(d) By virtue of the constructed mapping h, the point (π,0) passes to the point (π,0) by continuity.  

Example 2. Consider systems of the following form on the two-dimensional cylinder  



 

 sin/cos)(' 2 IF , ),(/)('   IF , 0, I                  (9) 

where  cos/sin)(),( 2 IF , under the previous conditions on the function F. It is 

likewise a variable dissipation system with zero mean.  

Lemma 2. The infinite-dimensional space of vector fields X(Q) corresponding to the system (2) is 

partitioned into the disjoint union )()()()( 321 QXQXQXQX   having the following properties:  

(a) the system (2) defined via the spaces )( 1QX , )( 3QX  , is relatively rough in the space X(Q);  

(b) the system (2) defined via the space )( 2QX  is a system of the first degree of nonroughness in 

the space X(Q);  

(c) the set )( 2QX  has zero measure in the space X(Q);  

(d) the sets )( 1QX , )( 3QX  have a finite measure in the space X(Q).  

The topological equivalence in this case is constructed depending on the region of the phase 

cylinder and also depending on the classes )( kQX , k = 1, 2, 3.  
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