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Abstract: This activity is devoted to the study of the relative structural stability (relative 

roughness) of dynamical systems considered not on the whole space of dynamical systems, but only 

on its certain subspace. Moreover, the space of deformations of systems also does not coincide with 

the whole space of admissible deformations. In particular, we consider systems of differential 

equations arising in the dynamics of a rigid body interacting with a resisting medium. We show that 

they are relatively rough under certain conditions, they can also have nonroughness property of 

different degrees.  

1. Introduction 

Rough (structurally stable) systems can be considered as simplest ones; they are most spread in the 

corresponding space of dynamical systems. Indeed, rough systems are isolated by inequality-type 

conditions; therefore, it is natural to consider them as the most general case. One can draw a far-

reaching analogy between rough systems and functions of one variable that have only simple roots, as 

well as the curves having no singularities and considered in a finite part of a plane. This analogy is 

rather fruitful, in particular, for working out efficient methods of qualitative study.  

Sometimes it is of interest to consider the relative roughness, namely, the roughness with respect 

to a certain class of dynamical systems, i.e., with respect to a certain subset of the space of systems. 

This concept of relative roughness can be used in isolating nonrough systems, i.e., systems of first 

degree on nonroughness. Note that from the point of view of such a classification of nonrough 

systems, conservative systems are systems of infinite degree of nonroughness, in other words, its 

degree of nonroughness is higher than any finite degree of nonroughness. Thus, conservative systems 

are rather «rare» from the standpoint of such a classification.  
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However, considering the class of conservative (or Hamiltonian) systems, we can introduce the 

concept of roughness of a system with respect to this class. Namely this concept was used in fact by 

Poincare (without the term «roughness»).  

Systems of the first degree of nonroughness can be defined as systems which are relatively rough 

in the set of (relatively) nonrough systems (the precise definition will be given in what follows).  

A nonrough (relatively nonrough) vector field can be topologically equivalent to the rough 

(relatively rough) vector field. For example, on a two-dimensional sphere, a situation is possible in 

which the vector field is (absolutely) nonrough, although it is topologically equivalent to a rough 

vector field (on the topological equivalence, see below). The main cause of nonroughness in the last 

case is the degeneracy of the derivative in a neighborhood of a limit set. In the case of analytic 

systems, requiring that the right-hand sides of a system have no less than five derivatives, one can 

define the systems of the second degree of roughness as systems relatively rough in the set of systems 

that are nonrough and are not systems of the first degree of nonroughness.  

In an absolutely similar way one can define systems of 3rd, 4th, …, n-th degree of roughness. The 

definition is introduced by induction. In the case of systems with analytical right-hand sides, which 

we consider, the definition of system proximity is introduced. Thus, the dynamical system is called a 

system of the n-th degree of roughness in a closed region if it is a nonrough system that is not a 

nonrough system of degree less or equal to n-1 and if it is relatively rough in the set of nonrough 

systems that are not nonrough systems of degree less or equal to n-1.  

2. Definition of the Relative Structural Stability (Relative Roughness)  

The classical definition of roughness [1-4], and also the definition given in [5] operate with two 

objects, namely, with classes of systems and with their own space of deformations of systems with the 

topology. For the first time, the definition of roughness of a dynamical system on the plane was given 

under certain additional assumptions with respect to the set of systems being considered. Namely, it 

was additionally assumed that the boundary of the domain where the system was considered is a 

noncontractible cycle for the trajectory of this system, i.e., a simple smooth closed curve without 

contacts (not tangent to the trajectory of the system). Obviously, in this case, this curve is also a 

noncontractible cycle for the trajectory of any system sufficiently close to that under consideration. 

Although this assumption severely restricts the class of systems being considered, the meaning of the 

concept of system's roughness is retained, while the definition of roughness is much simple than that 

given under general assumptions on the boundary of the domain.  
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One can introduce the definition of roughness in such a way that the presence of nonrough 

trajectories lying on the boundary of the domain would not be forbidden. But this does not 

correspond to the meaning of the concept of roughness.  

In our opinion, it is both natural and necessary from various points of view to introduce the 

concept of roughness without special assumptions about the boundary of a domain [6].  

As for the concept of roughness (as well as that of various degrees of nonroughness), it is based 

on the concept of the topological equivalence of dynamical systems.  

Let Xr(M) be the space of Cr-vector field on a compact manifold M with Cr-topology, r ≥ 1. Two 

vector fields X, Y   Xr(M) are called topologically equivalent if there exists a homeomorphism 

MMh :  that takes trajectories of the field X to trajectories of the field Y preserving their 

orientations; this last condition means that if Mp  and 0 , then there exists 0  such that if 

 t0 , then ))(()( ' phYphX tt   for a certain ),0(' t . We call h a topological equivalence 

between X and Y. Thus, we have defined an equivalence relation on )(MX r . Another, more strong 

relation is the conjugacy of vector field flows. Two vector fields X and Y are called conjugate, if there 

exists a topological equivalence h that preserves the parameter t; this means that ))(()( phYphX tt   

for all Mp  and Rt .  

The definition given by Andronov and Pontryagin, along with the closeness in a certain topology 

of the system under consideration and its deformation requires that a homeomorphism that realizes 

the topological equivalence of the last two systems should be close to the identity operator. On the 

other hand, the definition given by Peixoto does not require such a closeness property.  

If the system is rough in the Andronov-Pontryagin sense, then it is rough in the Peixoto sense as 

well. Moreover, the necessary and sufficient conditions of roughness in the Andronov-Pontryagin 

sense coincide with the necessary and sufficient conditions of roughness in the Peixoto sense. The 

latter definition has the following advantage: it directly implies that rough systems fill in regions in 

the space of dynamical systems. On the other hand, if the first definition is used, this property is to be 

proved relying on the necessary and sufficient conditions of roughness.  

Let   be a sufficiently small neighborhood of the vector field X under consideration in )(MX r . 

As was already noted in brief, in the original definition of roughness given by Andronov and 

Pontryagin, it is also required that for sufficiently small  , the homeomorphism realizing the 

topological equivalence between X and Y can be made arbitrarily close to the identity operator in the 

C0-topology (i.e., it can shift points of M arbitrarily small). Since the version of this requirement was 

proposed by Peixoto, in the cases where it is necessary to clear out exactly which version of 

roughness is meant, one speaks about the roughness in the Andronov-Pontryagin sense and about the 
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roughness in the Peixoto sense. However, at present, it is still not clear whether these versions differ 

from one another and whether one of them has any tangible advantages over the other.  

The presented definition depends of r. If it is necessary to explicitly point this dependence, one 

can speak about the roughness in the class Cr.  

Up to now, we spoke about the global properties of vector fields on manifolds. One can analyze 

the local topological behavior of trajectories of vector fields. For vector fields from a certain open 

dense subset in the space )(MX r , one can describe the behavior of trajectories in a neighborhood of 

each point of the manifold. In addition, the local structure of trajectories is not changed under small 

perturbations of the field (the so-called local roughness). Thus, the topological conjugacy yields a 

complete classification.  

In higher dimensions, the set of rough fields is still vast, but it ceases to be everywhere dense. 

Here, there exist versatile and more complex phenomena that are preserved under small perturbations 

of the original field. Even for rough fields the structure of trajectories is not completely known, and 

its description is still a field of active research.  

By virtue of the classical definitions of the structural stability criteria for the latter were discussed 

both for linear nonatonomous systems and for the classes of nonlinear systems. The attributes of the 

structural stability for lower-dimensional systems are formulated as hypotheses due to Smale. They 

are extended to higher dimensions.  

Several other modified definitions of roughness appeared recently. All of them have one feature 

in common, namely, deformations of dynamical systems considered on a certain manifold Mn are 

taken in the whole space of smooth vector fields )( rC  in the Cr-topology (most often, r = 1).  

We consider vector fields (dynamical systems) that are deformed not over the whole class 

)( nr MX  of fields, but only over a certain subclass )(QX  defined via a class of functions rCQ .  

Definition 1. A vector field v on a manifold Mn is said to be relatively structurally stable (relatively 

rough or rough with respect to the class of fields )(QX  defined via the class of functions Q) if for 

any neighborhood   of the homeomorphism nM
1 , in the space of all homeomorphisms with C0-

topology, there exists a neighborhood )(QXU  of the vector field v under consideration such that 

the latter is equivalent to any vector field from )(QXU  via a certain homeomorphism from  .  

Note that the closeness of vector fields is understood in the C1-topology, and the closeness of 

homeomorphisms is understood in the C0-topology. Moreover, here, we deal not with the conjugacy 

but with the equivalence.  

Also, we note that up to now, in the definition given above, the following aspects are important:  

1. The homeomorphism realizing the equivalence is sufficiently small;  
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2. The C1-topology in the space of vector fields under consideration.  

3. Relative Structural Instability (Relative Nonroughness) of Various Degrees  

Similar to the definition of a vector field of the first degree of nonroughness, we can define the fields 

of the first degree of relative nonroughness by considering vector field deformations in the subspace 

X(Q) of the space of all vector fields.  

Definition 2. A vector field v on the manifold Mn is called a vector field of the first degree of 

nonroughness if it is not a relatively rough vector field and if, for any neighborhood   of the 

homeomorphism nM
1  in the space of all homeomorphisms with the C0-topology, there exists a 

neighborhood )(QXU  of the vector field such that the field v is topologically equivalent to any 

field from )(QXU  that is not relatively rough. This equivalence relation is realized by a certain 

homeomorphism from  .  

Note that the closeness of vector fields in this case is understood in the C3-topology.  

In a similar way, one can define vector fields which are fields of the n degree of relative 

nonroughness. Here, the C2n+1-topology in the space of vector fields is used.  

Definition 3. A vector field v on the manifold Mn is called a vector field of the n-th degree of relative 

nonroughness if it is not a relatively nonrough vector field of degree less than or equal to n-1 and if 

for any neighborhood   of the homeomorphism nM
1  in the space of all homeomorphisms with C0-

topology, there exists a neighborhood )(QXU  of the vector field v such that the field v is 

topologically equivalent to any field from )(QXU  that is not relatively rough or relatively 

nonrough vector field of degree less than or equal to n-1 via a certain homeomorphism from  .  

4. Examples from the Dynamics of a Rigid Body Interacting with a Medium  

Consider systems arising in the plane dynamics of a rigid body interacting with a resisting medium. 

Since certain phase variables are cyclic, the general sixth-order system admits a separation of the 

independent subsystem of the third order. In turn, in this subsystem, by using the well-known 

technique, the system of the second order is isolated. Such systems have one property in common. 

Since, as a rule, variable dissipation systems with zero mean have additional symmetries; these 

systems have separatrices connecting hyperbolic saddle equilibrium states. That is why (absolutely) 

such systems cannot be structurally stable. Since deformations of such systems are only considered 

over a certain subset of all systems defined through a certain subclass of functions (right-hand sides) 

that makes it possible to preserve all the symmetries in the system, the systems under consideration 

remain relatively rough in certain domains of parameters.  
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Example 1. Consider systems of the following form on the two-dimensional cylinder  

)(,cos/)( 21  FAFA   , A1 > 0, A2 > 0,                  (1) 

under the following condition: F – smooth odd π-periodic function such that F’(0) > 0, F’(π/2) < 0, 

F(α) > 0 if )2/,0(   and F(α) < 0 if ),2/(  . Thus Q = {F}.  

Lemma 1. System (1) is relatively structurally stable. Moreover, any two systems of the form (1) are 

topologically equivalent.  

Sketch of the Proof. We define the set of vector fields X(Q) corresponding to system (1); moreover, 

the function F runs over the whole class Q. The space of system parameters is infinite-dimensional. 

Lemma 1 follows from the following observations.  

(a) For any F   Q, the phase portrait of system (1) is of one and the same topological type:  

 

Fig. 1  

(b) in every region of the phase cylinder (oscillatory and rotational) (see Fig. 1) the equivalence 

of its own is constructed; on the «key» separatrices, these equivalencies are «sewed».  

(c) For instance, in the oscillatory region (see Fig. 1), the equivalence is constructed as follows. 

We construct not only an equivalence, i.e., a homeomorphism h of the phase cylinder, but, what is 

more, the conjugacy. In the oscillatory domain, there exist only two singular points, (0,0) and (π,0) 

(the first of them is repelling, and the second is an attracting one). Thus, we consider two systems (1) 

for the function F1(α) and F2(α). The corresponding phase flows of the phase cylinder are denoted by 

tg1
 and tg2

. We require that the homeomorphism h take the origin to the origin. Consider a small 

circle S1 around the origin. It can be chosen transversal to both fields of systems (1) for F = F1(α) and 

F = F2(α), simultaneously. We define h(p) = p (accurate up to a linear contraction or dilation) for all 

1Sp  in such a way that )()( 1

2

1

1 phph   and )()( 2

2

2

1 phph  . Here, )()( 1

2

1

1 phph  , k = 1, 2, are two 

points on the circle S1; for F = Fk, the separatrices of the vector field of system (1) which emanate 
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from the origin and enter the saddles (in the central strip) pass through them. If q is not the origin, 

then there exists a unique Rt  such that 1

1 )( Spqg t  . We set )()()( 122 qggpgqh ttt   . It is 

immediately seen that h is continuous and has a continuous inverse.  

(d) By virtue of the constructed mapping h, the point (π,0) passes to the point (π,0) by continuity.  

Example 2. Consider systems of the following form on the two-dimensional cylinder  

 sin/cos)(' 2 IF , ),(/)('   IF , 0, I                  (2) 

where  cos/sin)(),( 2 IF , under the previous conditions on the function F. It is 

likewise a variable dissipation system with zero mean.  

Lemma 2. The infinite-dimensional space of vector fields X(Q) corresponding to the system (2) is 

partitioned into the disjoint union )()()()( 321 QXQXQXQX   having the following properties:  

(a) the system (2) defined via the spaces )( 1QX , )( 3QX  , is relatively rough in the space X(Q);  

(b) the system (2) defined via the space )( 2QX  is a system of the first degree of nonroughness in 

the space X(Q);  

(c) the set )( 2QX  has zero measure in the space X(Q);  

(d) the sets )( 1QX , )( 3QX  have a finite measure in the space X(Q).  

The topological equivalence in this case is constructed depending on the region of the phase 

cylinder and also depending on the classes )( kQX , k = 1, 2, 3.  

6. Conclusions  

In general, the dynamics of a body interacting with a medium is exactly a domain where there arise 

either dissipative systems or systems with the so-called antidissipation. It is very difficult to construct 

any method that would be general enough for studying such systems; therefore, it becomes urgent to 

elaborate such a technique namely for those classes of systems which appear in simulating the 

motions of such bodies which contact with a medium on a plane part of their outer surface.  

Since in such a simulation, one uses the experimental data on the properties of jet flow, it 

becomes necessary to study the class of dynamical systems that have the (relative) structural stability 

property. Therefore, it is quite natural to introduce the definitions of relative roughness for such 

systems.  

Thus, we speak about systems with the so-called variable dissipation; here, the term «variable» 

refers rather to a possible change of sign of the dissipation factor than to its magnitude. On average 

over the period in the attack angle, the dissipation can be both positive and negative; it can also be 

zero. In the last case, we speak about variable dissipation systems with zero mean.  
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