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Abstract. A generazation to the 3D of plane-parallel motion of a solid interacting with re-

sistant medium, for which the conditions of jet or escape flow hold, is considered. Because of 

using experimental information on the properties of jet flow, we are forced to consider a 

whole class of dynamic systems that possess the property of relative structural stability. An 

example of a dynamic system that has a complete  set of first integrals expressible via elemen-

tary functions is given. The present paper is devoted to the study of the possible extension to 

the 3D case of results of plane-parallel dynamics of motion of a solid in resistant medium for 

which the conditions of jet or escape flow hold. Here the procedures of construction of three-

dimensional phase portraits for systems with variable dissipation are applied. We consider an 

example of using these procedures in the study of a class of 3D motions of a solid in a re-

sistant medium for which the system is subjected to a nonintegrable servoconstraint that 

makes it possible to consider the system of dynamical motion equations to be of smaller di-

mension.  
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1 INTRODUCTION 

Dynamic model of interaction of a rigid body with resisting medium  provided jet flow, and
1
 

considered in activity, not only allows successfully to transfer outcomes appropriate problems 

from plane dynamics of a rigid body interacting with the medium
2
 and to receive their spatial 

analogs, but also to detect new cases of integrability till the Jacobi
34

. Thus in some cases the 

integrals express through elementary functions. In activity the integrability of classical is shown 

in the problems about a spherical pendulum, located in a flow by filling of a medium, about 

spatial motion of a body at availability constraint, and also the mechanical and topological anal-

ogies are shown in the last two problems. 

The hypothesizes adduced in
5
 and concerning of properties of a medium, have found the re-

flection in construction of spatial (3D) dynamic model of interaction of a rigid body with resist-

ing medium. In this connection there is a capability of formalizing of the model suppositions 

and obtaining of a full system of ordinary differential equations. 

 

2 DYNAMIC SYSTEM 

2.1 Area of interaction 

All interaction of medium with a body is concentrated on that part of a surface of a body 

which has the shape of convex plane area P .  

2.2 Force of interaction 

As the interaction happens under the laws of jet flow the force S  of this interaction is di-

rected on a normal line to area and the point N  of the acting of this force is determined only in 

one parameter - by an angle of attack   which is measured between vector of velocity v  of a 

point D  of a plate and external normal line in this point (straight line CD ). The point D  is the 

interception of the straight line CD  ( C  - center of mass) that is perpendicular to plane P . 

Thus, DN R ( ).   

2.3 Some of hyposesys  

Size of force of resistance we shall accept as S sv 2 , where v  is the module of speed of a 

point D , and coefficient of resistance s  is the function only of angle of attack: s s ( ).   

2.4 Description of servoconstraint 

There is the additional force T , which acts on a body on the straight line CD . Let's name it 

as “force of a thrust”. The introduction of this force is used, as for maintenance of some specific 

classes of motions (thus T  is the reaction of the possible (or probable) imposed constraint and 

in the methodical purposes, which pursue learning of interesting non-linear systems (having 

character of pendulum) arising at the reduction of the order. In case of absence external force T  

the body makes free braking (deceleration) in a resisting medium. 
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2.5 Systems of coordinates 

Systems of coordinates connected to a body shall designate through Dxyz.  The last coordi-

nate system connected to a point D  is selected such that the tensor of inertia in the given sys-

tem has diagonal type: diag A B C{ , , } . Mass distribution we shall accept by such that longitudi-

nal principal axis of inertia coincides an axis CD  (it is an axis Dx ), and the axes Dy and Dz  

lie in a plane P  and will derivate with the right of coordinate system. Moreover, we shall con-

sider case dynamically symmetrical rigid body, i.e. the equality  

B C  
is executed. 

2.6 System of dynamical equations 

In this case for the description of a position of a body in 3D space it is possible to select the 

Cartesian coordinates ( , , )x y z0 0 0  of a point D  and three angles ( , , )   , which are deter-

mined similarly to classical navigational angles.  

By virtue of the theorem of motion of center of mass in space in projections on moving axes 

( , , )x y z  and theorem of change of kinetic moment of rather these axes, we receive a full system 

of differential equations considered in dynamic space of quasivelocities  

v v qv rv q r
T

m

s

m
v'cos ' sin sin sin sin cos ( )

( )
       


      2 2 2  

v v v rv pv pq r'sin cos ' cos cos ' sin sin cos sin sin '                   0  

v v v qv pv pr q'sin sin ' cos sin ' sin cos cos sin cos '                   0  

Ap C B qr' ( )   0  

Bq A C pr z s vN' ( ) ( )     2  

Cr B A pq y s vN' ( ) ( )    2  

Here coordinates of a point N  in a system ( , , )e e ex y z  will accept as: ( , ( , ), ( , ))0 y zN N     

where y RN ( , ) ( )cos ,     z RN ( , ) ( ) sin ,       is the distance CD .  

In a general dynamic system of the twelfth order by virtue of cyclic character of positional 

coordinates the splitting of independent subsystem of sixth order happens in a phase space of 

quasivelocities 2 1 3{ , } { } { , , }   v p q r . Here ( , , )v    are the spatial polar coordinates 

of the velocity of point D , ( , , )p q r  is the projection of angular velocity to coordinate system 

connected with a body.  

 

3 DYNAMICALLY SYMMETRICAL RIGID BODY WITH CONSTRAINT 

3.1 Dynamic equations of motion of a free rigid body 

Dynamic equations of motion of a free rigid body at availability of servoconstraint of a type  

v const  
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(plane version of the given problem see in
67

 accept the first integral  

p p 0  

and look like  
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Here z q r z r q1 2   cos sin , cos sin .     

The function in a dynamic system (1),(2) has the following properties: for qualitative de-

scription of its we use being available the experimental information on properties of jet flow.  

The function F  is smooth, odd,  - periodic, satisfying to a property: 0)( F  at 

)
2
,0(


  .  

3.2 Main theorems  

Proposition 1. The dynamic system (1),(2) is equivalent (in trajectory sense) topologically to 

a system (1),(2) under such condition:  

F F A B A B  0 0( ) ' 'sin cos , ' , '                                        (3) 

The system (1),(2) under condition of (3) will accept a type of analytical:  
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0

2 
' '

.  

Let's consider the capabilities of an integration of a system (1),(2) at a level p0 0 . At this 

field of vectors of a system (1) has three kinds of symmetry:  
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1) A central symmetry. Such symmetry near the points ( , , ),k k0 0   in space 3

2 1{ , , } z z  

arise for the reason that the vector field in coordinates { , , } z z2 1  changes the sign at replace-

ment  
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2) Some mirror symmetry (SMS). Such symmetry is related to the planes  i i,   where 

 i z z i   {( , , ) : } 


2 1
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2
 arises for the reason that   - making component of field of 

vectors of our system in coordinates { , , } z z2 1  is saved at replacement  
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and z2  - and z1  - making components change the sign;  

3) by a symmetry is related to the planes {( , , ) : } z z z2 1

3

1 0  , namely, z2  - and     - 

making of components of vector field of a system are saved at replacement  
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and z1  - making component changes the sign.  

In activities
6
 the first integral of a system from plane dynamics expressed through elementary 

functions.  

Theorem 1. The system (1) at p0 0  has a full set of the first integrals, one from which is 

meromorphic function, and second is transcendental. The system (1),(2) at p0 0  also is quite 

integrated till Jacobi, two from which first integral are integrals of systems (1) at p0 0  and 

third is analytical function.  

The meromorphic integral of a system (1) at p0 0  will look like  

z z n vz n v

z
C1

2

2

2

0

2

2 0

2 2 2

1

1

  


  



sin sin

sin
                             (4) 

As the system (1),(2) at p0 0  has a variable dissipation and also is analytical, for its it is 

possible in an obvious kind to find two other additional integrals. The following identity is exe-

cuted  

u C G1 1

1

2
 { }  
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Here G C u n vu n v u z u z      1

2

2

2

0

2

2 0

2 2

1 1 2 24[ ], , , sin      (for search of addition-

al integrals it is used the meromorphic first integral (4)). A quadrature for search of a unknown 

quantity of an integral linking the sizes u2  and   is received by a kind  
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The size (6) is broken into a part  where 
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Additional the first integral of a systems found above being by transcendental function of 

state variables makes together with (4) a full set of the first integrals of a system (1) at p0 0 . 
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For the system (1),(2) at p0 0  the one more first integral is necessary.  

Remark. Everywhere is higher instead of it is necessary to insert left-hand part of equality 

(4). 

For search of the last integral of a system (1),(2) at p0 0  we shall remark, that as 
dz
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The left-hand part of the last equality (without the sign) has a kind  
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After substitutions we have a unknown quantity an invariant ratio  
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analytical relation.  

Example. If n0 2  the equality (7) accept a following kind  
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4 CLASSICAL PROBLEM ABOUT A SPARTIAL PENDULUM IN A FLOW  

By analogy to plane case, we shall consider the problem about a dynamically symmetrical 

spatial pendulum, located in a flow of filling medium. At first we shall consider case of zero 

curliness along a centerline of a dynamic symmetry.  

Let convex plane area is fixed perpendicularly of segment on the spherical hinge also is in a 

flow of filling medium which is gone from a constant by speed v  0  . Let's assume that the 

segment does not create a resistance.  

The total force S  of effect of a flow of medium on a body is directed in parallel to segment 

and the point N  of the appendix of this force is determined only in one parameter - angle of 

attack  , which is measured between the vector of speed v A  of a point A  concerning of a flow 
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and the segment. Thus the force S  is directed to the normal line to that side from it which is 

opposite to a direction of vector of speed v A  and crosses through some point N  of plane area 

biased from a point A  forwards on to the relation to a direction of v A . The similar conditions 

arise at use the models of jet flow of spatial bodies.  

The vector e  determines the orientation of the segment. Thus S s v eA ( ) 2  where a resistant 

coefficient s s ( ) .  

Let Ox y z0 0 0  is the fixed coordinate system. A direction of the filling flow the hours coincide 

a direction of an axis Ox0 . Let's connect to a body the coordinate system Axyz  where the axis 

Ax  is directed along the segment and axes Ay  and Az  hardly are connected to plane area.  

The coordinates of a point N  in a system Axyz  look like ( , )0 y zN N . On the analogies to a 

problem about motion of a free body its are entered a function R( )  and also the angle   

which is measuring in a plane Ayz . Thus let for a simplicity the property (3) is executed. For 

any allowed function R( )  the analysis is carried out similarly.  

If the body is symmetric dynamically ( A B C,   are the main moments of inertia in a system 

Axyz ), ( , , )p q r  are the projections of angular velocities in the system Axyz  that the equations 

of motion will accept as a kind  

q n vA' sin cos sin  0

2 2     

(8) 

r n vA' sin cos cos 0

2 2     

The force of resistance accepts an availability of the first integral p p 0  thus in equations 

(8) the condition p0 0  is taken into account.  

Let's consider the angles ( , )   which are determining an orientation of a pendulum. An an-

gle   let's measure from an axis Ox0  up to the segment and   is measured from a projection of 

the segment on a plane Ox z0 0  up to an axis Oy0 . Then  

cos cos cos    

sin cos cos sin                                                     (9) 

sin sin sin    

4.1 Full set of equations  

Ratioes linking ( , )vA   and ( , , , )  r q  ( l  is the length of the segment) look like  

v vA cos cos     

v lr vA sin cos sin cos                                              (10) 

v lq vA sin sin sin sin        

By virtue of kinematic ratios, we have the following relations  
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Using properties (9) and (11) we have the following identities  
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' sin '

sin

cos
cos  

(12) 

r    



'cos '

sin

cos
sin  

The equations from (8),(10) and (12) will derivate a full system for the determination of the 

motion of a pendulum at a level of an integral p0 0 .  

Proposition 2. A full set of equations of the motion of a pendulum at condition (3) has a kind  

     



' ' 'cos sin cos '

sin

cos
    ln v n v0
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2 2 2 0  

(13) 

  


 
 ' ' ' '

cos

cos sin
'cos


 

1
0

2

0

2ln v  

As well as in case of a free body the system (13) has some symmetries. It also has a full set 

of the first integrals, expressed through elementary functions and the angle   is a cyclical coor-

dinate.  

Theorem 2. The system (13) is topologically equivalent to (1) at p0 0 . Thus, as well as in 

plane case it is fair the mechanical analogy between a pendulum in a flow of a medium and the 

free body at availability of the servoconstraint.  

 

5 REMARKS ON A RIGID BODY OF THE LAGRANGE IN THE SPECIAL FIELD 

OF THE FORCES 

5.1 Forces  

One more analogy to a rigid body of the Lagrange in special field of forces is fair. Let on a 

rigid body of the Lagrange in case when longitudinal making angular rate is equal to zero the 

following force acts. It is perpendicular of an equatorial plane and its size is equal to 



Maxim V. Shamolin. 

C s C1 1 0( ),   (  is the angle of nutation) and the distance from the point of the acting up to an 

axis of a dynamic symmetry is equal to C R C2 2 0( ),  .  

Then the dynamic equations of motion (for a simplicity in case (3)) will accept as a kind  

 ' z2  

z n v z2 0

2 2

1

2' sin cos
cos

sin
  




                                         (14) 

z z z1 1 2'
cos

sin





 





'

cos

sin
 z1                                                          (15) 

Corollary. The system (14),(15) is equivalent to (1),(2) at p0 0  and at   0 .  

Thus, we have three problems which are equivalent among themselves:  

à) Free rigid body at availability of servoconstraint;  

b) a pendulum in a flow of a medium;  

c) a rigid body of the Lagrange in special a field of the forces.  

 

6 TRAJECTORIES OF MOTION OF A SPHERICAL PENDULUM AND THE CASE 

OF NON-ZERO OF ITS CURLING ABOUT A CENTERLINE  

6.1 Trajectories of a pendulum on a sphere 

Pursuant to properties of the splitting on trajectories of phase spaces of a pendulum at a zero 

own curling the typical trajectories of a point D  in the plane area are divided into classes.  

a) Trajectories appropriate to oscillatory area. Such trajectories represent the curves on a 

sphere which beyond all bounds approaching to the poles of a sphere (on a flow) at t  .  

b) Trajectories appropriate to rotary area. Such trajectories represent the curves almost al-

ways are everywhere dense and filling ring-shaped areas on an sphere and are symmetrical rela-

tively the equator.  

6.2 Spherical pendulum at a non-zero own curling  

Let's consider the equations of the motion of a pendulum under condition of when p0 0 :  
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Let's proceed to a classification of possible paths of a pendulum on a sphere.  

a) Trajectories which are similar to trajectories à) for case p0 0 .  

Asymptotics of behaviour of such curve are former.  

b) Trajectories which are similar to trajectories b) for case p0 0 . Such trajectories almost 
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always are everywhere dense on the whole sphere.  
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