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ABSTRACT - A generalization to the 3D case of plane-parallel motion of a solid interacting with resistant 

medium, for which the conditions of jet or escape flow hold, is considered. Because of using experimental 

information on the properties of jet flow, we are forced to consider a whole class of dynamic systems that possess 

the property of relative structural stability. An example of a dynamic system that has a complete  set of first 

integrals expressible via elementary functions is given. The present paper is devoted to the study of the possible 

extension to the 3D case of results of plane-parallel dynamics of motion of a solid in resistant medium for which 

the conditions of jet or escape flow hold. Here the procedures of construction of three-dimensional phase 

portraits for systems with variable dissipation are applied. We consider an example of using these procedures in 

the study of a class of 3D motions of a solid in a resistant medium for which the system is subjected to a 

nonintegrable servoconstraint that makes it possible to consider the system of dynamical motion equations to be 

of smaller dimension.  

 

NOTATION 

 
P   Plane area 

S  Resistant force 

N  Point of an acting of the force 

  Angle of attack 

v  Vector of velocity 

D  Point of the plane area 

C  Center of mass 

R, s  Aerodynamic functions 

T  Servoconstraint force 

{A,B,C} Main components of tensor of inertia 

( , , )x y z0 0 0  Cartesian coordinates 

( , , )    Angles for determining of the position of a body 

( , , )x y z  Moving axes 

( , , )e e ex y z  System of coordinates 

   Distance CD 

( , , )v    Spatial polar coordinates  

( , , )p q r  Projection of angular velocity  

( , , , )  r q  Coordinates of a pendulum 

 

INTRODUCTION 

 

Dynamic model of interaction of a rigid body with resisting medium  provided jet flow 

(Lokshin et al., 1986), considered in activity, not only allows successfully to transfer 

outcomes appropriate problems from plane dynamics of a rigid body interacting with the 

medium (Gurevich, 1979) and to receive their spatial analogs, but also to detect new cases of 

integrability till the Jacobi (Samsonov et al., 1989, 1990). Thus in some cases the integrals 

express through elementary functions. In activity the integrability of classical is shown in the 

problems about a spherical pendulum, located in a flow by filling of a medium, about spatial 

motion of a body at availability constraint, and also the mechanical and topological analogies 

are shown in the last two problems. 



 The hypothesizes adduced in (Chaplygin, 1976) and concerning of properties of a 

medium, have found the reflection in construction of spatial (3D) dynamic model of 

interaction of a rigid body with resisting medium. In this connection there is a capability of 

formalizing of the model suppositions and obtaining of a full system of ordinary differential 

equations. 

 

DYNAMIC SYSTEM 

 

Area of interaction 

 

All interaction of medium with a body is concentrated on that part of a surface of a body 

which has the shape of convex plane area P .  

 

Force of interaction 

 

As the interaction happens under the laws of jet flow the force S  of this interaction is directed 

on a normal line to area and the point N  of the acting of this force is determined only in one 

parameter - by an angle of attack   which is measured between vector of velocity v  of a 

point D  of a plate and external normal line in this point (straight line CD ). The point D  is 

the interception of the straight line CD  ( C  - center of mass) that is perpendicular to plane P . 

Thus, DN R ( ).   

 

Some of hyposesys  

 

Size of force of resistance we shall accept as S sv 2 , where v  is the module of speed of a 

point D , and coefficient of resistance s  is the function only of angle of attack: s s ( ).   

 

Description of servoconstraint 

 

There is the additional force T , which acts on a body on the straight line CD . Let's name it as 

“force of a thrust”. The introduction of this force is used, as for maintenance of some specific 

classes of motions (thus T  is the reaction of the possible (or probable) imposed constraint and 

in the methodical purposes, which pursue learning of interesting non-linear systems (having 

character of pendulum) arising at the reduction of the order. In case of absence external force 

T  the body makes free braking (deceleration) in a resisting medium. 

 

Systems of coordinates 

 

Systems of coordinates connected to a body shall designate through Dxyz.  The last coordinate 

system connected to a point D  is selected such that the tensor of inertia in the given system 

has diagonal type: diag A B C{ , , } . Mass distribution we shall accept by such that longitudinal 

principal axis of inertia coincides an axis CD  (it is an axis Dx ), and the axes Dy and Dz  lie 

in a plane P  and will derivate with the right of coordinate system. Moreover, we shall 

consider case dynamically symmetrical rigid body, i.e. the equality  

 

B C  
 

is executed. 



 

System of dynamical equations 

 

In this case for the description of a position of a body in 3D space it is possible to select the 

Cartesian coordinates ( , , )x y z0 0 0  of a point D  and three angles ( , , )   , which are 

determined similarly to classical navigational angles.  

 By virtue of the theorem of motion of center of mass in space in projections on moving 

axes ( , , )x y z  and theorem of change of kinetic moment of rather these axes, we receive a full 

system of differential equations considered in dynamic space of quasivelocities  

 

v v qv rv q r
T

m

s

m
v'cos ' sin sin sin sin cos ( )

( )
       
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Ap C B qr' ( )   0  

Bq A C pr z s vN' ( ) ( )     2  

Cr B A pq y s vN' ( ) ( )    2  

         

 Here coordinates of a point N  in a system ( , , )e e ex y z  will accept as: 

( , ( , ), ( , ))0 y zN N     where y RN ( , ) ( )cos ,     z RN ( , ) ( ) sin ,       is the 

distance CD .  

 In a general dynamic system of the twelfth order by virtue of cyclic character of 

positional coordinates the splitting of independent subsystem of sixth order happens in a phase 

space of quasivelocities 2 1 3{ , } { } { , , }   v p q r . Here ( , , )v    are the spatial polar 

coordinates of the velocity of point D , ( , , )p q r  is the projection of angular velocity to 

coordinate system connected with a body.  

 

DYNAMICALLY SYMMETRICAL RIGID BODY WITH CONSTRAINT 

 

Dynamic equations of motion of a free rigid body 

 

Dynamic equations of motion of a free rigid body at availability of servoconstraint of a type  

 

v const  
 

(plane version of the given problem see in (Shamolin, 1994, 1996)) accept the first integral  
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and look like  
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Here z q r z r q1 2   cos sin , cos sin .     

The function in a dynamic system (1),(2) has the following properties: for qualitative 

description of its we use being available the experimental information on properties of jet 

flow.  

The function F  is smooth, odd,  - periodic, satisfying to a property: F()  0  at 




( , )0
2

.  

 

Main theorems  

 

Proposition 1. The dynamic system (1),(2) is equivalent (in trajectory sense) 

topologically to a system (1),(2) under such condition:  

 

F F A B A B  0 0( ) ' 'sin cos , ' , '                                        (3) 

 

The system (1),(2) under condition of (3) will accept a type of analytical:  

 

  



' sin

cos
   z n

v

A

B
p

z
2 0

2

0

1  

z n v z z
A

B
p

v

A

B
p

z
2 0

2 2

1 1 0 0

2' sin cos
cos

sin cos
   









 








 

z z z
A

B
p

v

A

B
p

z
1 2 1 0 0

2'
cos

sin cos
  


















 









'

cos

sin cos
   









p z

v

A

B
p

z
0 1 0

2  

 

Here n
A B

B
0

2 
' '

.  

Let's consider the capabilities of an integration of a system (1),(2) at a level p0 0 . At 

this field of vectors of a system (1) has three kinds of symmetry:  

1) A central symmetry. Such symmetry near the points ( , , ),k k0 0   in space 

3

2 1{ , , } z z  arise for the reason that the vector field in coordinates { , , } z z2 1  changes the 

sign at replacement  
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 2) Some mirror symmetry (SMS). Such symmetry is related to the planes  i i,   

where  i z z i   {( , , ) : } 


2 1

3

2
 arises for the reason that   - making component of 

field of vectors of our system in coordinates { , , } z z2 1  is saved at replacement  
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and z2  - and z1  - making components change the sign;  

3) by a symmetry is related to the planes {( , , ) : } z z z2 1

3

1 0  , namely, z2  - and  

   - making of components of vector field of a system are saved at replacement  
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and z1  - making component changes the sign.  

In activities (Shamolin, 1994) the first integral of a system from plane dynamics 

expressed through elementary functions.  

Theorem 1. The system (1) at p0 0  has a full set of the first integrals, one from 

which is meromorphic function, and second is transcendental. The system (1),(2) at p0 0  

also is quite integrated till Jacobi, two from which first integral are integrals of systems (1) at 

p0 0  and third is analytical function.  

The meromorphic integral of a system (1) at p0 0  will look like  

 

z z n vz n v

z
C1

2

2

2

0

2

2 0

2 2 2

1

1

  


  



sin sin

sin
                             (4) 

 

As the system (1),(2) at p0 0  has a variable dissipation and also is analytical, for its 

it is possible in an obvious kind to find two other additional integrals. The following identity 

is executed  

 

u C G1 1

1

2
 { }  

 

Here G C u n vu n v u z u z      1

2

2

2

0

2

2 0

2 2

1 1 2 24[ ], , , sin      (for search of additional 

integrals it is used the meromorphic first integral (4)). A quadrature for search of a unknown 

quantity of an integral linking the sizes u2  and   is received by a kind  
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Furthermore,  
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Let us for a determinancy C a1

2 4 0  . Then  
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Additional the first integral of a systems found above being by transcendental function 

of state variables makes together with (4) a full set of the first integrals of a system (1) at 

p0 0 . For the system (1),(2) at p0 0  the one more first integral is necessary.  



Remark. Everywhere is higher instead of it is necessary to insert left-hand part of 

equality (4). 

For search of the last integral of a system (1),(2) at p0 0  we shall remark, that as 
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and, therefore, the required quadrature receives a kind  
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The left-hand part of the last equality (without the sign) has a kind  
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 After substitutions we have a unknown quantity an invariant ratio  
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analytical relation.  

Example. If n0 2  the equality (7) accept a following kind  
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CLASSICAL PROBLEM ABOUT A SPARTIAL PENDULUM IN A FLOW  

 

By analogy to plane case, we shall consider the problem about a dynamically symmetrical 

spatial pendulum, located in a flow of filling medium. At first we shall consider case of zero 

curliness along a centerline of a dynamic symmetry.  

Let convex plane area is fixed perpendicularly of segment on the spherical hinge also 

is in a flow of filling medium which is gone from a constant by speed v  0  . Let's assume 

that the segment does not create a resistance.  

The total force S  of effect of a flow of medium on a body is directed in parallel to 

segment and the point N  of the appendix of this force is determined only in one parameter - 



angle of attack  , which is measured between the vector of speed v A  of a point A  

concerning of a flow and the segment. Thus the force S  is directed to the normal line to that 

side from it which is opposite to a direction of vector of speed v A  and crosses through some 

point N  of plane area biased from a point A  forwards on to the relation to a direction of v A . 

The similar conditions arise at use the models of jet flow of spatial bodies.  

The vector e  determines the orientation of the segment. Thus S s v eA ( ) 2  where a 

resistant coefficient s s ( ) .  

Let Ox y z0 0 0  is the fixed coordinate system. A direction of the filling flow the hours 

coincide a direction of an axis Ox0 . Let's connect to a body the coordinate system Axyz  

where the axis Ax  is directed along the segment and axes Ay  and Az  hardly are connected to 

plane area.  

The coordinates of a point N  in a system Axyz  look like ( , )0 y zN N . On the analogies 

to a problem about motion of a free body its are entered a function R( )  and also the angle   

which is measuring in a plane Ayz . Thus let for a simplicity the property (3) is executed. For 

any allowed function R( )  the analysis is carried out similarly.  

If the body is symmetric dynamically ( A B C,   are the main moments of inertia in a 

system Axyz ), ( , , )p q r  are the projections of angular velocities in the system Axyz  that the 

equations of motion will accept as a kind  
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The force of resistance accepts an availability of the first integral p p 0  thus in 

equations (8) the condition p0 0  is taken into account.  

Let's consider the angles ( , )   which are determining an orientation of a pendulum. 

An angle   let's measure from an axis Ox0  up to the segment and   is measured from a 

projection of the segment on a plane Ox z0 0  up to an axis Oy0 . Then  
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Full set of equations  

 

Ratioes linking ( , )vA   and ( , , , )  r q  ( l  is the length of the segment) look like  
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By virtue of kinematic ratios, we have the following relations  
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Using properties (9) and (11) we have the following identities  
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The equations from (8),(10) and (12) will derivate a full system for the determination 

of the motion of a pendulum at a level of an integral p0 0 .  

Proposition 2. A full set of equations of the motion of a pendulum at condition (3) has 

a kind  
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As well as in case of a free body the system (13) has some symmetries. It also has a 

full set of the first integrals, expressed through elementary functions and the angle   is a 

cyclical coordinate.  

Theorem 2. The system (13) is topologically equivalent to (1) at p0 0 . Thus, as well 

as in plane case it is fair the mechanical analogy between a pendulum in a flow of a medium 

and the free body at availability of the servoconstraint.  

 

REMARKS ON A RIGID BODY OF THE LAGRANGE IN THE SPECIAL FIELD OF 

THE FORCES 

 

Forces  

 



One more analogy to a rigid body of the Lagrange in special field of forces is fair. Let on a 

rigid body of the Lagrange in case when longitudinal making angular rate is equal to zero the 

following force acts. It is perpendicular of an equatorial plane and its size is equal to 

C s C1 1 0( ),   (  is the angle of nutation) and the distance from the point of the acting up to 

an axis of a dynamic symmetry is equal to C R C2 2 0( ),  .  

 Then the dynamic equations of motion (for a simplicity in case (3)) will accept as a 

kind  
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2 2
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 Corollary. The system (14),(15) is equivalent to (1),(2) at p0 0  and at   0 .  

 Thus, we have three problems which are equivalent among themselves:  

 à) Free rigid body at availability of servoconstraint;  

 b) a pendulum in a flow of a medium;  

 c) a rigid body of the Lagrange in special a field of the forces.  

 

TRAJECTORIES OF MOTION OF A SPHERICAL PENDULUM AND THE CASE 

OF NON-ZERO OF ITS CURLING ABOUT A CENTERLINE  

 

Trajectories of a pendulum on a sphere 

 

Pursuant to properties of the splitting on trajectories of phase spaces of a pendulum at a zero 

own curling the typical trajectories of a point D  in the plane area are divided into classes.  

 à) Trajectories appropriate to oscillatory area. Such trajectories represent the curves on 

a sphere which beyond all bounds approaching to the poles of a sphere (on a flow) at t  .  

 b) Trajectories appropriate to rotary area. Such trajectories represent the curves almost 

always are everywhere dense and filling ring-shaped areas on an sphere and are symmetrical 

relatively the equator.  

 

Spherical pendulum at a non-zero own curling  

 

Let's consider the equations of the motion of a pendulum under condition of when p0 0 :  
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 Let's proceed to a classification of possible paths of a pendulum on a sphere.  

 à) Trajectories which are similar to trajectories à) for case p0 0 .  



Asymptotics of behaviour of such curve are former.  

 b) Trajectories which are similar to trajectories b) for case p0 0 . Such trajectories 

almost always are everywhere dense on the whole sphere.  
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