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In many problems of dynamics, there appear mechanical systems with many degrees of freedom and
with dissipation (with a position space considered as a multi-dimensional manifold). The tangent bundles of
such manifolds become their phase spaces. For example, the study of an n-dimensional generalized spherical
pendulum in a nonconservative force field leads to a dynamical system on the tangent bundle of an (n− 1)-
dimensional sphere; a specific metric on it is induced by an additional symmetry group [1, 2]. In this case,
the dynamical systems describing the motion of such a pendulum possess alternating dissipation and the
complete list of first integrals consists of transcendental functions in the sense of complex analysis; these
functions can be expressed in terms of a finite combination of elementary functions.

We also mention the class of problems concerning the motion of a point on a multi-dimensional surface
such that its metric is induced by the Euclidean metric of the ambient space. In a number of cases, it is also
possible to find the complete list of first integrals for the systems with dissipation when this list consists of
transcendental functions. The obtained results are especially important, since a nonconservative force field
is present in such a system.

In this paper we show the integrability of certain classes of dynamical systems on the tangent bundle of a
multi-dimensional manifold. Similar studies are discussed in [3–5] for the cases when the manifold dimension
is equal to 2, 3, and 4. We also show that the force fields with variable dissipation generalize those considered
earlier.

1. EQUATIONS OF GEODESIC LINES AFTER CHANGING THE COORDINATES
AND THEIR FIRST INTEGRALS

Let us consider an n-dimensional smooth Riemannian manifold Mn with coordinates (α, β), where β =
(β1, . . . , βn−1), and with the affine connection Γi

jk(x). As is known, the equations of geodesic lines take the
following form on the tangent bundle T∗M

n{α̇, β̇1, . . . , β̇n−1;α, β1, . . . , βn−1}, where α = x1, β1 = x2, . . .,
βn−1 = xn, and x = (x1, . . . , xn):

ẍi +

n∑

j,k=1

Γi
jk(x)ẋ

j ẋk = 0, i = 1, . . . , n. (1)

Here the differentiation is performed with respect to the natural parameter.
Now we study the structure of Eqs. (1) under a change of coordinates on the tangent bundle T∗M

n. Let
us consider the following coordinate change for the tangent space:

ẋi =

n∑

j=1

Rij(x)zj . (2)

This coordinate change is dependent on a point x of the above manifold and can be inverted almost every-
where:

zj =

n∑

i=1

Tji(x)ẋ
i.
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138 SHAMOLIN

Here Rij and Tji (i, j = 1, . . . , n) are some functions of x1, . . . , xn and RT = E, where R = (Rij) and
T = (Tji). We call Eqs. (2) the new kinematic relations , i.e., the relations of the tangent bundle T∗M

n.
The following equalities are valid:

żj =
n∑

i=1

Ṫjiẋ
i +

n∑

i=1

Tjiẍ
i, Ṫji =

n∑

k=1

Tji,kẋ
k. (3)

Here Tji,k = ∂Tji/∂x
k, j, i, k = 1, . . . , n. Substituting (3) into (1), we get

żi =
n∑

j,k=1

Tij,kẋ
j ẋk −

n∑

j,p,q=1

TijΓ
j
pqẋ

pẋq . (4)

In (4) we should replace ẋi, i = 1, . . . , n, by the formulas given in (2).
In other words, the equality expressed by (4) can be rewritten as

żi +

n∑

j,k=1

Qijkẋ
j ẋk|(2) = 0, Qijk(x) =

n∑

s=1

Tis(x)Γ
s
jk(x)− Tij,k(x).

Proposition 1. System (1) is equivalent to the system expressed by (2) and (4) in the domain where
detR(x) �= 0.

Thus, the transition from Eqs. (1) to the equivalent system (2), (4) is dependent on the coordinate
change (2) of the tangent space (i.e., on the new kinematic relations) and on the affine connection Γi

jk(x).

2. AN IMPORTANT PARTICULAR CASE

Further, we consider the following sufficiently general case of specifying the kinematic relations:

α̇ = −zn,

β̇1 = zn−1f1(α),

β̇2 = zn−2f2(α)g1(β1),

β̇3 = zn−3f3(α)g2(β1)h1(β2),

. . . . . . . . . . . . . . . . . . . . . . . .

β̇n−1 = z1fn−1(α)gn−2(β1)hn−3(β2) · . . . · i1(βn−2).

(5)

Here fk(α), k = 1, . . . , n− 1; gl(β1), l = 1, . . . , n− 2; hm(β2), m = 1, . . . , n− 3; . . ., and i1(βn−2) are smooth
functions on their domains of definition. The coordinates z1, . . . , zn are introduced in the tangent space when
the following equations of geodesic lines with n(n− 1) nonzero connection coefficients are considered [6, 7]:

α̈+ Γα
11(α, β)β̇

2
1 + . . .+ Γα

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈1 + 2Γ1
α1(α, β)α̇β̇1 + Γ1

22(α, β)β̇
2
2 + . . .+ Γ1

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈2 + 2Γ2
α2(α, β)α̇β̇2 + 2Γ2

12(α, β)β̇1β̇2 + Γ2
33(α, β)β̇

2
3 + . . .+ Γ2

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈3 + 2Γ3
α3(α, β)α̇β̇3 + 2Γ3

13(α, β)β̇1β̇3 + 2Γ3
23(α, β)β̇2β̇3 + Γ3

44(α, β)β̇
2
4

. . .+ Γ3
n−1,n−1(α, β)β̇

2
n−1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

β̈n−2 + 2Γn−2
α,n−2(α, β)α̇β̇n−2 + 2Γn−2

1,n−2(α, β)β̇1β̇n−2

. . .+ 2Γn−2
n−3,n−2(α, β)β̇n−3β̇n−2 + Γn−2

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈n−1 + 2Γn−1
α,n−1(α, β)α̇β̇n−1 + 2Γn−1

1,n−1(α, β)β̇1β̇n−1 + . . .+ 2Γn−1
n−2,n−1(α, β)β̇n−2β̇n−1 = 0.

(6)

Here the other connection coefficients are equal to zero. In particular, these equations can be considered on
the multi-dimensional surfaces of revolution.
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INTEGRABLE SYSTEMS WITH MANY DEGREES OF FREEDOM 139

In the case of the kinematic relations (5), Eqs. (4) take the form

ż1 =
[
2Γn−1

α,n−1(α, β) +Dfn−1(α)
]
z1zn −

[
2Γn−1

1,n−1(α, β) +Dgn−2(β1)
]
f1(α)z1zn−1

−
[
2Γn−1

2,n−1(α, β) +Dhn−3(β2)
]
f2(α)g1(β1)z1zn−2

. . .−
[
2Γn−1

n−2,n−1(α, β) +Di1(βn−2)
]
fn−2(α)gn−3(β1)hn−4(β2) · . . . · r1(βn−3)z1z2,

ż2 =
[
2Γn−2

α,n−2(α, β) +Dfn−2(α)
]
z2zn −

[
2Γn−2

1,n−2(α, β) +Dgn−3(β1)
]
f1(α)z2zn−1

. . .−
[
2Γn−2

n−3,n−2(α, β) +Dr1(βn−3)
]
fn−3(α)gn−4(β1)hn−5(β2) · . . . · s1(βn−4)z2z3

−Γn−2
n−1,n−1(α, β)

f2
n−1(α)

fn−2(α)

g2n−2(β1)

gn−3(β1)

h2
n−3(β2)

hn−4(β2)
· . . . · r

2
2(βn−3)

r1(βn−3)
i21(βn−2)z

2
1 ,

. . . . . . . . . . . . . . . . . . . . . . . .

żn−1 =
[
2Γ1

α1(α, β) +Df1(α)
]
zn−1zn − Γ1

22(α, β)
f2
2 (α)

f1(α)
g21(β1)z

2
n−2

. . .− Γ1
n−1,n−1(α, β)

f2
n−1(α)

f1(α)
g2n−2(β1)h

2
n−3(β2) · . . . · i21(βn−2)z

2
1 ,

żn = Γα
11f

2
1 (α)z

2
n−1 + Γα

22f
2
2 (α)g

2
1(β1)z

2
2 + . . .+ Γα

n−1,n−1f
2
n−1(α)g

2
n−2(β1)h

2
n−3(β2) · . . . · i21(βn−2)z

2
1 ,

(7)

where DQ(q) = d ln |Q(q)|/dq. Equations (6) are equivalent everywhere to the composite system expressed
by (5) and (7) on the tangent bundle T∗M

n{zn, . . . , z1;α, β1, . . . , βn−1}.
In order to solve this system, it is necessary to know 2n− 1 independent first integrals. Below we show

that, in our case, it is necessary to know a less number of first integrals.
Proposition 2. Let the following system of n(n − 1)/2 equalities be valid everywhere on its domain of

definition:

2Γ1
α1(α, β) +Df1(α) + Γα

11(α, β)f
2
1 (α) ≡ 0,

. . . . . . . . . . . . . . . . . . . . . . . .

2Γn−1
α,n−1(α, β) +Dfn−1(α) + Γα

n−1,n−1(α, β)f
2
n−1(α)g

2
n−2(β1)h

2
n−3(β2) . . . i

2
1(βn−2) ≡ 0,

[
2Γ2

12(α, β) +Dg1(β1)
]
f2
1 (α) + Γ1

22(α, β)f
2
2 (α)g

2
1(β1) ≡ 0,

. . . . . . . . . . . . . . . . . . . . . . . .
[
2Γn−1

1,n−1(α, β) +Dgn−2(β1)
]
f2
1 (α) + Γ1

n−1,n−1(α, β)f
2
n−1(α)g

2
n−2(β1)h

2
n−3(β2) · . . . · i21(βn−2) ≡ 0,

. . . . . . . . . . . . . . . . . . . . . . . .
[
2Γn−1

n−2,n−1(α, β) +Di1(βn−2)
]
f2
n−2(α)g

2
n−3(β1)h

2
n−4(β2) · . . . · r21(βn−3)

+ Γn−2
n−1,n−1(α, β)f

2
n−1(α)g

2
n−2(β1)h

2
n−3(β2) · . . . · i21(βn−2) ≡ 0.

(8)

Then, the system expressed by (5) and (7) has the analytic first integral

Φ1(zn, . . . , z1) = z21 + . . .+ z2n = C2
1 = const. (9)

At first glance, it is not necessary to solve the complicated quasilinear equations (8) to prove the existence
of the first integral (9). The system of these equations contains some partial differential equations that
degenerate into ordinary differential equations. It is possible to prove a theorem concerning the existence of
the solution fk(α), k = 1, . . . , n− 1; gl(β1), l = 1, . . . , n− 2; hm(β2), m = 1, . . . , n− 3; . . ., and i1(βn−2) to
Eqs. (8) in order to reveal the existence of the analytic first integral (9) for system (5) and (7) of the geodesic
equations (6). In our further study of dynamical systems with dissipation, however, it is not necessary to use
the complete group of conditions (8). Nevertheless, below we assume that the following conditions should be
valid in Eqs. (5):

f1(α) = . . . = fn−1(α) = f(α). (10)

In addition, we also assume that the functions gl(β1), l = 1, . . . , n − 2; hm(β2), m = 1, . . . , n − 3; . . ., and
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i1(βn−2) should satisfy the following modified equations given in (8):

2Γ2
12(α, β) +Dg1(β1) + Γ1

22(α, β)g
2
1(β1) ≡ 0,

. . . . . . . . . . . . . . . . . . . . . . . .

2Γn−1
1,n−1(α, β) +Dgn−2(β1) + Γ1

n−1,n−1(α, β)g
2
n−2(β1)h

2
n−3(β2) · . . . · i21(βn−2) ≡ 0,

. . . . . . . . . . . . . . . . . . . . . . . .

2Γn−1
n−2,n−1(α, β) +Di1(βn−2)g

2
n−3(β1)h

2
n−4(β2) · . . . · r21(βn−3)

+ Γn−2
n−1,n−1(α, β)g

2
n−2(β1)h

2
n−3(β2) · . . . · i21(βn−2) ≡ 0.

(11)

Thus, the functions gl(β1), l = 1, . . . , n− 2; hm(β2), m = 1, . . . , n− 3; . . ., and i1(βn−2) are dependent on
the connection coefficients through the system expressed by (11). The restrictions imposed on the function
f(α) are discussed below.

Proposition 3. If the properties expressed by (10) and (11) are valid and the equalities

Γ1
α1(α, β) = . . . = Γn−1

α,n−1(α, β) = Γ1(α) (12)

are satisfied, then the system expressed by (5) and (7) has the smooth first integral

Φ2(zn−1, . . . , z1;α) =
√
z21 + . . .+ z2n−1 Φ0(α) = C2 = const, (13)

Φ0(α) = f(α) exp

⎧
⎨

⎩2

α∫

α0

Γ1(b) db

⎫
⎬

⎭ .

Proposition 4. If the conditions of Proposition 3 are fulfilled and the equalities

g1(β1) = . . . = gn−2(β1) = g(β1), (14)

Γ2
12(α, β) = . . . = Γn−1

1,n−1(α, β) = Γ2(β1) (15)

are valid, then the system expressed by (5) and (7) has the smooth first integral

Φ3(zn−2, . . . , z1;α, β1) =
√
z21 + . . .+ z2n−2Φ0(α)Ψ1(β1) = C3 = const, (16)

Ψ1(β1) = g(β1) exp

⎧
⎪⎨

⎪⎩
2

β1∫

β10

Γ2(b) db

⎫
⎪⎬

⎪⎭
.

By induction, we repeat the above reasoning and come to the following proposition.
Proposition 5. If the conditions of Propositions 3 and 4 are fulfilled and the equality

Γn−1
n−2,n−1(α, β) = Γn−1(βn−2) (17)

is valid, then the system expressed by (5) and (7) has the smooth first integral

Φn(z1;α, β1, . . . , βn−2) = z1Φ0(α)Ψ1(β1) · . . . ·Ψn−2(βn−2) = Cn = const, (18)

Ψn−2(βn−2) = i(βn−2) exp

⎧
⎪⎨

⎪⎩
2

β2∫

β20

Γ3(b) db

⎫
⎪⎬

⎪⎭
, i(βn−2) = i1(βn−2).

Proposition 6. If the conditions of Propositions 3, 4, and 5 are fulfilled, then the system expressed by (5)
and (7) has the first integral

Φn+1(zn−2, . . . , z1;α, β) = βn−1 ±
βn−2∫

βn−20

Cni(b)√
C2

n−1Φ
2
n−2(b)− C2

n

db = Cn+1 = const. (19)
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INTEGRABLE SYSTEMS WITH MANY DEGREES OF FREEDOM 141

The first integrals expressed by (9), (13), (16), (18), and (19) represent the complete list of the independent
first integrals of the system expressed by (5) and (7) if the above-mentioned conditions are fulfilled. Below
we show that this list contains the n+ 1 first integrals rather than the 2n− 1 first integrals.

The question of the smoothness of the first integral (19) is not simple. In principle, this integral can be
expressed in terms of a finite combination of elementary functions or can be a rational function. Since the
dynamical system under consideration has no asymptotic limit sets, the function expressed by (19) cannot
be a transcendental function from the standpoint of complex analysis. Indeed, this function has no essential
singular points. From the standpoint of the elementary function analysis, however, this function can be
transcendental [8].

3. EQUATIONS OF MOTION IN THE POTENTIAL FORCE FIELD AND THEIR FIRST INTEGRALS
Now we modify the system expressed by (5) and (7) under the conditions given in (10)–(12), (14), (15),

and (17). As a result, we come to a conservative system, where the existence of the force field is characterized
by the sufficiently smooth coefficient F (α) in the second equation of the following system given on the tangent
bundle T∗M

n{zn, . . . , z1;α, β1, . . . , βn−1}:
α̇ = −zn,

żn = F (α) + Γα
11(α, β)f

2(α)z2n−1 + Γα
22(α, β)f

2(α)g2(β1)z
2
2

. . .+ Γα
n−1,n−1(α, β)f

2(α)g2(β1)h
2(β2) · . . . · i2(βn−2)z

2
1 ,

żn−1 = [2Γ1(α) +Df(α)] zn−1zn − Γ1
22(α, β)f(α)g

2(β1)z
2
n−2

. . .− Γ1
n−1,n−1(α, β)f(α)g

2(β1)h
2(β2) · . . . · i2(βn−2)z

2
1 ,

. . . . . . . . . . . . . . . . . . . . . . . .

ż2 = [2Γ1(α) +Df(α)] z2zn − [2Γ2(β1) +Dg(β1)] f(α)z2zn−1

. . .− [2Γn−2(βn−3) +Dr(βn−3)] f(α)g(β1)h(β2) · . . . · s(βn−4)z2z3

− Γn−2
n−1,n−1(α, β)f(α)g(β1)h(β2) · . . . · r(βn−3)i

2(βn−2)z
2
1 ,

ż1 = [2Γ1(α) +Df(α)] z1zn − [2Γ2(β1) +Dg(β1)] f1(α)z1zn−1

− [2Γ3(β2) +Dh(β2)] f(α)g(β1)z1zn−2

. . .− [2Γn−1(βn−2) +Di(βn−2)] f(α)g(β1)h(β2) · . . . · r(βn−3)z1z2,

β̇1 = zn−1f(α), β̇2 = zn−2f(α)g(β1), β̇3 = zn−3f(α)g(β1)h(β2),

. . . . . . . . . . . . . . . . . . . . . . . .

β̇n−1 = z1f(α)g(β1)h(β2) · . . . · i(βn−2).

(20)

This system is equivalent almost everywhere to the following system:

α̈+ F (α) + Γα
11(α, β)β̇

2
1 + . . .+ Γα

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇

2
2 + . . .+ Γ1

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇

2
3 + . . .+ Γ2

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈3 + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3

+ Γ3
44(α, β)β̇

2
4 + . . .+ Γ3

n−1,n−1(α, β)β̇
2
n−1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

β̈n−2 + 2Γ1(α)α̇β̇n−2 + 2Γ2(β1)β̇1β̇n−2

. . .+ 2Γn−2(βn−3)β̇n−3β̇n−2 + Γn−2
n−1,n−1(α, β)β̇

2
n−1 = 0,

β̈n−1 + 2Γ1(α)α̇β̇n−1 + 2Γ2(β1)β̇1β̇n−1 + . . .+ 2Γn−1(βn−2)β̇n−2β̇n−1 = 0.

Proposition 7. If the conditions of Proposition 2 are fulfilled, then the system expressed by (20) has the
smooth first integral

Φ1(zn, . . . , z1;α) = z21 + . . .+ z2n + F1(α) = C1 = const, F1(α) = 2

α∫

α0

F (b) db. (21)

MOSCOW UNIVERSITY MECHANICS BULLETIN Vol. 74 No. 6 2019



142 SHAMOLIN

Proposition 8. If the conditions of Propositions 3, 4, and 5 are fulfilled, then the system expressed
by (20) has the smooth first integrals (13), (16), and (18).

Proposition 9. If the conditions of Proposition 6 are fulfilled, then the system expressed by (20) has the
first integral (19).

The first integrals (21), (13), (16), (18), and (19) represent the complete list of independent first integrals
of system (20) if the above-mentioned conditions are fulfilled. Below we show that this list contains the n+1
first integrals rather than the 2n− 1 first integrals.

The question of the smoothness of the first integral (19) is still not simple. Since the dynamical system
under consideration has no asymptotic limit sets even when a conservative force field exists, the function
expressed by (19) cannot be a transcendental function from the standpoint of complex analysis: this function
has no essential singular points. From the standpoint of the elementary function analysis, however, this
function can be transcendental [8].

4. EQUATIONS OF MOTION IN A FORCE FIELD WITH DISSIPATION
AND THEIR FIRST INTEGRALS

In order to obtain a system with dissipation, we complicate the system expressed by (20). The presence
of alternating dissipation is characterized by the sufficiently smooth coefficient bδ(α) in the first equation of
the following system:

α̇ = −zn + bδ(α),

żn = F (α) + Γα
11(α, β)f

2(α)z2n−1 + Γα
22(α, β)f

2(α)g2(β1)z
2
2

. . .+ Γα
n−1,n−1(α, β)f

2(α)g2(β1)h
2(β2) · . . . · i2(βn−2)z

2
1 ,

żn−1 = [2Γ1(α) +Df(α)] zn−1zn − Γ1
22(α, β)f(α)g

2(β1)z
2
n−2

. . .− Γ1
n−1,n−1(α, β)f(α)g

2(β1)h
2(β2) · . . . · i2(βn−2)z

2
1 ,

. . . . . . . . . . . . . . . . . . . . . . . .

ż2 = [2Γ1(α) +Df(α)] z2zn − [2Γ2(β1) +Dg(β1)] f(α)z2zn−1

. . .− [2Γn−2(βn−3) +Dr(βn−3)] f(α)g(β1)h(β2) · . . . · s(βn−4)z2z3

− Γn−2
n−1,n−1(α, β)f(α)g(β1)h(β2) · . . . · r(βn−3)i

2(βn−2)z
2
1 ,

ż1 = [2Γ1(α) +Df(α)] z1zn − [2Γ2(β1) +Dg(β1)] f1(α)z1zn−1

− [2Γ3(β2) +Dh(β2)] f(α)g(β1)z1zn−2

. . .− [2Γn−1(βn−2) +Di(βn−2)] f(α)g(β1)h(β2) · . . . · r(βn−3)z1z2,

β̇1 = zn−1f(α), β̇2 = zn−2f(α)g(β1), β̇3 = zn−3f(α)g(β1)h(β2),

. . . . . . . . . . . . . . . . . . . . . . . .

β̇n−1 = z1f(α)g(β1)h(β2) · . . . · i(βn−2).

(22)

This system is equivalent almost everywhere to the following system:

α̈− bα̇δ′(α) + F (α) + Γα
11(α, β)β̇

2
1 + . . .+ Γα

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈1 − bβ̇1δ(α)W (α) + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇

2
2 + . . .+ Γ1

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈2 − bβ̇2δ(α)W (α) + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2

+ Γ2
33(α, β)β̇

2
3 + . . .+ Γ2

n−1,n−1(α, β)β̇
2
n−1 = 0,

β̈3 − bβ̇3δ(α)W (α) + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3

+ Γ3
44(α, β)β̇

2
4 + . . .+ Γ3

n−1,n−1(α, β)β̇
2
n−1 = 0,

. . . . . . . . . . . . . . . . . . . . . . . .

β̈n−2 − bβ̇n−2δ(α)W (α) + 2Γ1(α)α̇β̇n−2 + 2Γ2(β1)β̇1β̇n−2

. . .+ 2Γn−2(βn−3)β̇n−3β̇n−2 + Γn−2
n−1,n−1(α, β)β̇

2
n−1 = 0,

β̈n−1 − bβ̇n−1δ(α)W (α) + 2Γ1(α)α̇β̇n−1 + 2Γ2(β1)β̇1β̇n−1

. . .+ 2Γn−1(βn−2)β̇n−2β̇n−1 = 0.

Here W (α) = 2Γ1(α) +Df(α).
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Now we solve the sought system (22) of order 2n when the following equalities are valid:

Γα
11(α, β) ≡ Γα

22(α, β)g
2(β1) ≡ . . . ≡ Γα

n−1,n−1(α, β)g
2(β1)h

2(β2) . . . = Γn(α). (23)

As was done in the case of Eqs. (11), we impose the following restriction on the function f(α): this
function should satisfy the modified first equality of (8) written in the form

2Γ1(α) +
d ln |f(α)|

dα
+ Γn(α)f

2(α) ≡ 0. (24)

In order to solve the system expressed by (22), we should know the 2n − 1 independent first integrals.
However, using the change of variables

wn = zn, wn−1 =
√
z21 + . . .+ z2n−1, wn−2 =

z2
z1

,

wn−3 =
z3√

z21 + z22
, . . . , w1 =

zn−1√
z21 + . . .+ zn−2

2

,

we split this system as follows:

α̇ = −wn + bδ(α),

ẇn = F (α) + Γn(α)f
2(α)w2

n−1,

ẇn−1 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
wn−1wn;

(25)

ẇs =±wn−1

√
1 + w2

sf(α) . . . [2Γs+1(βs) +Dj(βs)] ,

β̇s =± wswn−1√
1 + w2

s

f(α) . . . , s = 1, . . . , n− 2;
(26)

β̇n−1 = ± wn−1√
1 + w2

n−2

f(α)g(β1)h(β2) · . . . · i(βn−2). (27)

In (26), by the symbol “ . . .” we denote the identical terms, whereas the function j(βs) is one of the functions
g, h, . . . and is dependent on the corresponding angle βs.

In order to solve the system expressed by (25)–(27), it is sufficient to know the two independent first
integrals of system (25), the n− 2 first integrals of system (26), and an additional first integral to “attach”
Eq. (27). Thus, we should know n+ 1 first integrals in total.

Theorem. Let the equalities

Γn(α)f
2(α) = κ

d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
(28)

be valid for κ, λ ∈ R. Under the conditions given by (23) and (24), then, the system expressed by (22) has a
complete set of (n+ 1) independent transcendental first integrals.

To begin with, we relate the third-order system (25) to the nonautonomous second-order system

dwn

dα
=

F (α) + Γn(α)f
2(α)w2

n−1

−wn + bδ(α)
,

dwn−1

dα
=

[2Γ1(α) +Df(α)]wn−1wn

−wn + bδ(α)
. (29)

Introducing the variables wn = unδ(α) and wn−1 = un−1δ(α), we represent the system expressed by (29)
as

δ(α)
dun

dα
=

F3(α) + Γn(α)f
2(α)δ(α)u2

n−1 + δ′(α)u2
n − bδ′(α)un

−un + b
,

δ(α)
dun−1

dα
=

−Γn(α)f
2(α)δ(α)un−1un + δ′(α)un−1un − bδ′(α)un

−un + b
,

(30)

F3(α) =
F (α)

δ(α)
.
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Taking into account (28), we reduce (30) to the first-order equation

dun

dun−1
=

λ+ κu2
n−1 + u2

n − bun

(1− κ)un−1un − bun
. (31)

Equation (31) is an Abel-type equation [9]. In particular, this equation has the following first integral for
κ = −1:

u2
n + u2

n−1 − bun + λ

un−1
= C1 = const. (32)

Using the previous variables, this integral can be represented as

Θ1(wn, wn−1;α) = G1

(
wn

δ(α)
,
wn−1

δ(α)

)
=

w2
n + w2

n−1 − bwnδ(α) + λδ2(α)

wn−1δ(α)
= C1 = const. (33)

Further, we find the additional first integral of the third-order system (25) for κ = −1. To accomplish
this, we transform the invariant relation (32) for un−1 �= 0 as follows:

(
un − b

2

)2

+

(
un−1 −

C1

2

)2

=
b2 + C2

1

4
− λ. (34)

The parameters of this invariant relation satisfy the condition

b2 + C2
1 − 4λ ≥ 0. (35)

Then, the phase space of system (21) can be splitted into the family of surfaces given by (34).
By virtue of (32), thus, the first equation of (30) take the following form for κ = −1:

δ(α)

δ′(α)

dun

dα
=

2(λ− bun + u2
4)− C1U1(C1, un)

−un + b
, U1(C1, un) =

1

2
{C1 ±

√
C2

1 − 4(u2
n − bun + λ)}.

Here the integration constant C1 is chosen using (35).
Then, the additional first integral for the system expressed by (25) take the following structural form:

Θ2(wn, wn−1;α) = G2

(
δ(α),

wn

δ(α)
,
wn−1

δ(α)

)
= C2 = const. (36)

For κ = −1, this first integral can be found from the quadrature

ln |g(α)| =
∫

(b− un) dun

2(λ− bun + u2
n)− C1{C1 ±

√
C2

1 − 4(u2
n − bun + λ)}/2

, un =
wn

δ(α)
.

After evaluating this integral, we can use the equality expressed by (33) instead of C1. The right-hand side
of this equality can be expressed in terms of a combination of elementary functions, whereas the left-hand
side is dependent on the function δ(α). Hence, the expression of the first integrals (33) and (36) in terms of
a combination of elementary functions depends on the quadratures and on the explicit form of the function
δ(α).

The first integrals of system (26) can be written as

Θs+2(ws;βs) =

√
1 + w2

s

Ψs(βs)
= Cs+2 = const, s = 1, . . . , n− 2, (37)

where the functions Ψs(βs), s = 1, . . . , n − 2, are clarified by (16) and (18)). The additional first integral
“attaching” Eq. (27) can be found in a similar way as was done for (19):

Θn+1(w2, w1;α, β) = βn−1 ±
βn−2∫

βn−20

Cni(b)√
C2

n−1Ψ
2
n−2(b)− C2

n

db = Cn+1 = const.

After evaluating the last integral, the left-hand sides of (37) can be substituted instead of Cn−1 and Cn.
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5. STRUCTURE OF THE FIRST INTEGRALS FOR THE SYSTEMS WITH DISSIPATION

If α is a periodic coordinate with a period of 2π, then the system expressed by (25) becomes a dynam-
ical system possessing a variable dissipation with zero mean [1–5]. If b = 0, then this system becomes a
conservative system with the two smooth first integrals (21) and (13). Be virtue of (28), we have

Φ1(zn, . . . , z1;α) = z21 + . . .+ z2n + 2

α∫

α0

F (b) db ∼= w2
n + w2

n−1 + λδ2(α), (38)

where the symbol “∼=” indicates the equality up to an additive constant. Taking into account (24) and (28),
we conclude that

Φ2(zn−1, . . . , z1;α) =
√
z21 + . . .+ z2n−1 f(α) exp

⎧
⎨

⎩2

α∫

α0

Γ1(b) db

⎫
⎬

⎭
∼= wn−1δ(α) = C2 = const, (39)

where the symbol “∼=” indicates the equality up to an multiplicative constant.
Obviously, the ratio of the two first integrals (38) and (39) (or (21) and (13)) is also a first integral of

system (25) for b = 0. However, if b �= 0, then each of the functions

w2
n + w2

n−1 − bwnδ(α) + λδ2(α) (40)

and (39) taken separately is not a first integral of system (25). However, the ratio of the functions (40)
and (39) is a first integral of system (25) for any b when κ = −1.

For systems with dissipation, in general, the transcendence of functions (understood in the sense of the
existence of essentially singular points) as first integrals is caused by some attracting and repelling limit sets
existing in the system under study [10].

6. SOME APPLICATIONS

By analogy with low-dimensional cases, we consider the following important cases for the function f(α)
defining the metric on a sphere:

f(α) =
cosα

sinα
, (41)

f(α) =
1

cosα sinα
. (42)

In the case of (41), the class of systems corresponding to the motion of a dynamically symmetric (n+1)-
dimensional rigid body is formed at zero levels of cyclic integrals in a nonconservative field of forces [11]. In
the case of (42), the class of systems corresponding to the motion of a material point on an n-dimensional
sphere is formed also in a nonconservative field of forces. In particular, if δ(α) ≡ F (α) ≡ 0, then the
system under consideration describes a geodesic flow on an n-dimensional sphere. In the case of (41), if
δ(α) = F (α)/ cosα, then the system describes the motion of an (n+ 1)-dimensional rigid body in the force
field F (α) under the action of a tracking force [11]. In particular, if F (α) = sinα cosα and δ(α) = sinα,
then this system also describes a generalized (n + 1)-dimensional spherical pendulum in a nonconservative
force field and has a complete list of transcendental first integrals that can be expressed in terms of a finite
combination of elementary functions [2].

If the function δ(α) is not periodic, then the dissipation system under consideration is a system with
variable dissipation with zero mean; in other words, this system is properly dissipative and can be considered
as a system with accelerating forces. Nevertheless, an explicit form of transcendental first integrals that could
be expressed in terms of elementary functions can also be obtained in this case. This fact is a new nontrivial
case of integrability of dissipation systems in an explicit form.
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