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Oscillations During Spatial Deceleration of a Rigid Body
in a Resisting Medium

Maxim V. Shamolin’

Institute of Mechanics, Lomonosov Moscow State University
1 Michurinskii Ave., 119192 Moscow, Russian Federation
shamolin@rambler.ru. shamolin@imec.msu.ru

Abstract

Some qualitative analysis is carried out of the spatial problems concerning
the motion of a rigid body in a resisting medium. A nonlinear model is
constructed of impact of the medinum on the rigid body, which takes into
account the dependence of the arm of force on the reduced angular velocity
of the body. Moreover, the moment of this force itself is also a function of the
angle of attack. As was shown by the processing the experimental data on
the motion of homogeneous circular eylinders in water, these circumstances
should be taken into account in the simulation. The analysis of the plane
and spatial models of the interaction of a rigid body with a medium reveal
the sufficient conditions of stability of the key regime of motion, i.e., the
translational rectilinear deceleration. It is also shown that, under certain
conditions, both stable or unstable auto-oscillating regimes can be presented
in the system.

Keywords: rigid body, resisting medium, translational deceleration
Y 8 g

1 Introduction

Under study is the problem of motion of a rigid body interacting with a medium
only through the flat front portion of its outer surface. In constructing the force
action of the medium, we use information on the properties of the jet flow around
and assume the quasi-stationary conditions [1]. The motion of the medium is not
inspected, but we consider such a problem of the dynamics of a rigid body in which
the characteristic time of the body motion with respect to its center of mass is
commensurate with the characteristic time of motion of the center itself.

Owing to the complexity of nonlinear analysis, at the initial stage of our study
we neglected the dependence of the medinms force moment on the angular velocity
of the body and used the only dependence on the angle of attack [2,3].

From a practical point of view, an important issue is studying the stability of
the so-called unperturbed (rectilinear translational) motion for which the velocities
of the body points are perpendicular to a flat portion (cavitator).

The whole range of results obtained under this simple assumption allows us to
conclude that it is impossible to find the conditions under which the above systems
would have solutions corresponding to the bodys angular oscillations of a bounded
amplitude.

An experiment on the motion of homogeneous cirenlar cylinders in water [3, 4]
confirmed that, in simulating the influence of the medium on a solid, it is indeed
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necessary to take it into account that the moment of force of the medium also
depends on the angular velocity of the body. In this case, some additional terms
appear in the equations of motion, which introduce dissipation into the system.

When studying the motion of a body with finite angles of attack, the fundamental
question of nonlinear analysis consists in the finding the conditions under which
the oscillations of a bounded amplitude exist near the unperturbed motion, which
confirms the need for a complete nonlinear analysis.

Note also that in this paper the author realizes the idea of a phenomenologi-
cal quasi-stationary approach to the simulation of a body motion in some resisting
medium. Surely, simulation of the impact of the medium on a rigid body is not
limited to the approach applied in the present article. There are other purely non-
stationary hydrodynamic mechanisms of resistance, different from the considered,
for example, the damping connected with the effect of added masses [3,4].

2 Spatial Motion of an Axisymmetric Rigid Body
in a Resisting Medium

Let us consider the problem of spatial motion of a homogeneous axisymmetric rigid
body of mass m, a part of the surface of which has the shape of a flat circular disk
interacting with the medium according to the laws of jet flow around [2,3]. Suppose
that the remaining part of the body surface is not affected by the medium and places
inside the volume bounded by the jet surface breaking away from the edge of the
disk. Similar conditions may arise, for example. after the entry of a homogeneous
circular eylinder into water [4,5].

Suppose that the tangential forces to the disk are absent. Then the force S
applied to the body at the point N from the medium, does not change its orientation
relative to the body (directed along the normal to the disk) and is quadratic in the
velocity of its center D (Newtonian resistance, Fig. 1). It is also assumed that the
force of gravity acting on the body is negligible as compared with the force of the
mediums resistance (influence).

If these conditions are satisfied then, among the motions of the body, there
is a mode of rectilinear translational deceleration similar to the case of rectilinear
(unperturbed) motion: the body is able to perform translational motion in the
direction of its axis of symmetry, i.e. perpendicular to the plane of the disk.

We associate with the body a right coordinate system Daxyz (Fig, 1) and direct
the Dz axis along the axis of geometric svmmetry of the body. The axes Dy and
Dz are rigidly connected with the circular disc forming a right coordinate system.
The components of the angular velocity vector € in the svstem Dxyz will be de-
noted by {€2,.€,,Q.}. The inertia tensor of the dynamically symmetric body in the
introduced body axes Dzyz has a diagonal form: diag{/, I., I, }.

We use the hypothesis of quasistationarity and assume for simplicity that the
quantity 7y = DN is determined at least by the angle of attack o measured between
the velocity vector v of the center D of the disk and the axis Dz. Thus, DN =
Ry(a,...).

We take the value of the resistance force in the form S = |S| = s;(a)v?, v = |v|.
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Figure 1: Spatial motion of axisymmetric rigid body in a resisting medium

For convenience of further description (as in the case of rectilinear motion), instead of
the coefficient of resistance s;(a), we introduce an auxiliary alternating-sign function
s(a): s; = s(a) = s(a)sgncosa > 0. Thus, the pair of functions R,(a....) and
s(a) determines the force-moment characteristics of the medium influence on the
disk under these model assumptions.

2.1 Dynamic Part of the Equations of Spatial Motion

Consider the spherical coordinates (v, a, 3) of the end of the vector v = vp of the
velocity of the point D with respect to the flow, in which the angle is measured
in the plane of the disk (see Fig. 1). The quantities (v. a, 3) are expressed by some
nonintegrable relations through cyclic kinematic variables and their derivatives [2.3].
Therefore, we consider the triple (v.a. ) as quasi-velocities, adding to them the
components (£2,, €2, €2.) of the angular velocity in the axes associated with the body.
It is obvious that with respect to these axes vp = {vcosa, vsinacos 3, vsinasin 3},

By the theorems on the motion of the center of mass (in the projections onto
the body axes Dzyz) and on the change in the kineticmoment with respect to these
axes, we obtain the dynamic part of the differential equations of motion considered
in the six-dimensional phase space of quasi-velocities (o is the distance DC'). The
first group of equations corresponds to the motion of the center of mass itself, and
the second, to the motion around the center of mass:

2
; fge 2 ; ; ; ; sla)v
i cos a— v sin a2, v sinacsin §— Q. v sin a cos 3+ G(Slf, +02) =~ :
{ ' ‘ m
£ S8in o cos 3+ avcosacos F — Jusinasin 4 + Qv cosa — (v sin asin -
-2,y — 2. =0, (1)

U sinasin 5 + av cos asin 3 + Bu sin a cos 8+ Qusinacos F — v cos a—
-a{2, 8 + 082, =0, L,Q, =0,
1'_19” + (1| = [_))QJQ; = —':,\'h‘((\‘)l'z, IQQz -+ (1_} - ]1)!2152,/ = y_.\'s(r‘l)t'z,
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where (0, yn. zx) are the coordinates of the point N in the system Duryz.

Now we construct the functional classes {y}, {s}. Considering the experimental
information on the properties of jet flow around [1,2], we formally describe these
classes consisting of sufficiently smooth. 27-periodic functions (y(a) is odd. while
s(ar) is even), satisfying the following conditions: y{a) > 0 for a € (0,7), and
y'(0) > 0, '(7) < 0 (class of functions {y} = Y); s(a) > 0 for a € (0,7/2),
s(a) < 0 for a € (x/2,7), and 8(0) > 0, §'(x/2) < 0 (class of functions {s} = X).
Both y and s change sign under the substitution of a by a + 7. Thus.

yeY, sel. (2)

Similar to the choice of the medium impact functions, we take the dynamical

functions s, yy. and zy in the system (1) in the form (2), and also

yn = Rla)cos 3 — hlsf—f. zy = R(a)sin 3 + h,%.
(in this case, the function R corresponds to the function y, cf. also with [2.7]). In
the system under consideration still there is an additional damping (and. in some
domains of the phase space. accelerating) moment of the nonconservative force.

By (1). at all time there is cyclic invariant relation €2, = €., = const. In what
follows we will investigate the case of zero turning of a rigid body about its longi-
tudinal axis; i.e., when the condition .4 = 0 is fulfilled.

Projecting further the angular velocities onto the moving axes not related to the
body, so that 2y = Q, cos 3 + 2. sin 3, z9 = =2, sin J + . cos 3, and introducing,
as before, new dimensionless phase variables and differentiation by the formulas
2 =ngvZp, k=1,2, <.>=nyv <>, we reduce system (1) to the following form:

o' = oW (o, Zy, Za). (3)
) . / (v
o = —Zy+pa( 2+ Z3) sina+ LF((\)('OSO — ﬂZ._;.ez(n) COS (v + 30) cosar, (4)
" Iang I, mng
F 5 COS € hy . sl / .
Z = 7@ — TVl 2 ) — 2l _ S ﬁ(”) - =L Zs(a),  (5)
oM sin o I sina  Iyng
o h ol
2= BT T+ BTl Tz 7 M) B gy (6)
sin o I, sina  Iyng
g =2 (:f)s o N ahy Z .S.((t) , (7)
sin o I, “sina
U (a.Z,.2,) = ——;t-z(Z'f + Z2) cosa+ ——U—F(a) sin o — ala) COS (x — —ﬂ’ing(a)sin a.
= Iyng mig I,

In the case of the Chaplygin functions [1,6]
y(a) = Asina € {y}, A=9/(0) >0, s(a)=Beosa € {s}, B=s(0)>0, (8)
of the medinms influence, the analytic system of equations has the form

o' = v¥(a, Z,, Z5), (9)
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’ AR A 9 ’ 1 .
o ==Z5+ [lg(le + Z3) sin o+ iy Sin a €os” o — fiyfig Za cos® o+ - sinacosa, (10)

o5 COS (¥

Zy =sinacosa — ZyW (o, Z), Zy) — (1 + papg) Z3

— g Za COS @, (11)

C0S
Zy=-Z\V (e, 2y, Z) + (1 + ;12/1,3)Z|Z-l(f' S - faZy Cos @, (12)
sin o
Cos O
-'.']' = (l 4 /l.z’l.:j)zl - ¥ (13)
sin o
3 ; v ! : :
Vi (a, Zy, Zy) = —pa( Z; + Z3) cos a+ iz sin® a cos a — "Tl cos? (v — tapis Za Sin @ cos a,

=

where, as above, the dimensionless parameters yt;, po, and gy are selected as follows:

; AB Bh,
., M2 = b= ony, nf, = —, 3 =H) = —.
milg I Irng

23] =

Equations (4)-(7) (or (10)-(13)) of the system (3)-(7) (or (9)-(13)) form an
independent subsystem of the fourth order, while the equations (4)-(6) (or (10)
(12)) of the third order.

2.2 On the Stability of Rectilinear Translational Decelera-
tion

Let us investigate the stability of the key mode, the unperturbed motion, in relation
to perturbations of the angle of attack and angular velocity, i.e., in relation to the
variables a, Z,. and Z,. In other words, we investigate the stability of the trivial
solution of the independent third-order system (4)-(6) (if, of course, we extend the
definition of this system by continuity at the origin).

The following important proposition is valid:

Proposition 2.1. The plane
{(o; 21,2Z,) e R*: Z, =0} (14)
is an integral surface for the system (4)(6).

Furthermore, after the formal insertion Z, = 0 in (4)-(6), the remaining two
equations for a and Z; form a system describing the dynamics of the rectilinear
motion of the body [1].

Thus, the phase portrait of flat dynamics “falls™ on the plane (14). Moreover,
plane (14) separates the three-dimensional phase space into the two parts:

{(a,2),Z) e R®: 0 <a<m, Z >0} (15)

and {(a.Z,.Z;) e R*: 0 < a <w, Z; <0}, and in each of them the motion occurs
independently, but not arbitrarily in relation to each other because the system has
the symmetry

(8] (8]
Z| -, —Zl
Z Z
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with respect to the plane {(a. Z,, Z,) € R* : Z, = 0}. The latest facts show that it
suffices to investigate the system (4)-(6) in the semibounded layer (15), although it
cannot be considered a full-ledged phase space.
An important consequence of the latest remarks is the possibility of using the
function
Vila, Z)) = Z; sina (16)

as a Lyvapunov (Chetaev) function in the semibounded layer (15) since this function
is positive definite in it.

Theorem 2.1. The function (16) is a Lyapunov (Chetaev) function for the system
(4)-(6), i.e., its derivative according to (4)-(6) is negative definite for gz > py +
and positive definite for ps < py + po.

Corollary 2.1. For uz > py + po the system (4)-(6) has an atiracting singular
point at the origin (after the extension of definition of the right-hand sides in it),
and when p3 < g + po it has a repulsive point.

Indeed, the derivative of (16) according to (4)-(6) is represented as
(1 + p2 — pa) Zyax +0(0® + Z7 + Z3).

In particular, an analogous theorem holds also for the systems of the form (10)-
(12) taken for the Chaplygin functions of the mediums influence [1,6].

When we pass to the problem on the motion of homogeneous circular cylinders,
we can conclude that this asymptotic stability holds under the fulfillment of the
inequality

ok + oy < hD,
mD
where D is the cylinder diameter, o is the distance DC', whereas, k and h are the
dimensionless parameters of the water influence on the cylinder, or

oDk + 2r] < hD?,

where r; is the radius of inertia of the cylinder,

It can be observed that Theorem 2.1 gives the same conditions for asymptotic
stability with respect to the variables (a. Z,. Z;) as Proposition 2.1, which involves
dynamical systems from the dynamics of rectilinear motion.

In the case of spatial motion. the resulting systems have an uncertainty at the
origin, which is caused by the degeneracy of the spherical coordinates of the end of
the vector v, which is the velocity of the center of the front disk (cavitator). This
uncertainty is overcome by the definition of the extension of the right-hand sides of
dynamical systems.

3 Conclusion

Instability of the simplest movement of the body, the rectilinear translational decel-
eration, is used for methodological purposes, namely, for determination of unknown
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parameters of the environmental impact on a solid body under the conditions of
quasistationarity:.

An experiment on the motion of homogeneous circular cylinders in water, carried
out at the Institute of Mechanics of Lomonosov Moscow State University, confirmed
the fact that, in the simulation of the influence of the medium on a rigid body, it is
necessary to take into account an additional parameter which introduces dissipation
into the system.

When studyving the class of deceleration of a body with finite angles of attack,
the main issue is finding the conditions under which there exist auto-oscillations in a
finite neighborhood of rectilinear translational deceleration. There arises, therefore,
the need for a comprehensive nonlinear study.

The initial stage of this research is the neglecting the damping influence from the
medium to the rigid body. In functional language, this means the assumption that
the pair of dynamical functions that determine the effect of the medium depends
only on one parameter, the angle of attack. The dynamical systems that arise in
such a nonlinear description belong to the type of systems with variable dissipation.
Therefore. there is a need to create a methodology of studying such systems (see
also [2,3]).

In the qualitative description of the interaction of the body with the medium,
because of the use of experimental information on the properties of jet flow around,
there arise a certain variation in the simulation of the force-moment characteristics.
This makes natural the introduction of the definition of relative coarseness (relative
structural stability) and the proof of such coarseness for the systems under study [3].
Moreover, many of the systems under consideration turn out to be just (absolutely)
coarse in the sense of Andronov-Pontryagin in the ordinary sense,

In this article, some study is carried out of the motion of a body in a medium
taking into account the damping moment from the medium. Such a moment in-
troduces additional dissipation into the system: as a result, rectilinear translational
deceleration, in principle, can become stable.

Thus, under certain conditions, taking into account the damping effect from the
medium on the rigid body leads to a positive answer to the main question: during
the motion of the body in a medinm with finite angles of attack, in principle, the
occurrence of stable auto-oscillations is possible,

If the parameters of the problem admit the presence of a critical case. then,
depending on the top-order derivatives of the medium influence functions R and s,
rectilinear translational deceleration of the body can be either stable, or unstable
with respect to perturbations of the angle of attack and angular velocity.

In addition, sufficient conditions are found for such stability or instability, in-
cluding inequalities on the top-order derivatives of the functions of the mediums
influence. However, the main difficulty is the impossibility of experimentally mea-
suring these derivatives in explicit form.

The work also provides some reasoning concerning the way one can study the
behavior of a body near rectilinear translational deceleration (that is, stable or
unstable angular oscillations) using experimental information, thereby implicitly
estimating the top-order derivatives of the medium influence functions (see also
(8-10]).
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