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Preface

Dear Reader,

in this book you will �nd the Proceedings of the Summer School � Conference �Advanced Problems
in Mechanics (APM) 2018�. The conference had been started in 1971. The �rst Summer School
was organized by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of
the School was on nonlinear oscillations of mechanical systems with a �nite number of degrees of
freedom. Since 1994 the Institute for Problems in Mechanical Engineering of the Russian Academy
of Sciences organizes the Summer School. The traditional name of �Summer School � has been kept,
but the topics covered by the School have been much widened, and the School has been transformed
into an international conference. Now it is held under the patronage of the Russian Academy of
Sciences. The topics of the conference cover now almost all �elds of mechanics, being concentrated
around the following main scienti�c directions:

� aerospace mechanics;
� computational mechanics;
� dynamics of rigid bodies and multibody dynamics;
� �uid and gas;
� mechanical and civil engineering applications;
� mechanics of media with microstructure;
� mechanics of granular media;
� nanomechanics;
� nonlinear dynamics, chaos and vibration;
� molecular and particle dynamics;
� phase transitions;
� solids and structures;
� wave motion.

The Summer School � Conference has two main purposes: to gather specialists from di�erent
branches of mechanics to provide a platform for cross-fertilization of ideas, and to give the young
scientists a possibility to learn from their colleagues and to present their work. Thus the Scienti�c
Committee encouraged the participation of young researchers, and did its best to gather at the
conference leading scientists belonging to various scienti�c schools of the world.

We believe that the signi�cance of Mechanics as of fundamental and applied science should much
increase in the eyes of the world scienti�c community, and we hope that APM conference makes
its contribution into this process.

The Conference is organized by Institute for Problems in Mechanical Engineering of Russian
Academy of Sciences (IPME RAS) and Peter the Great St.Petersburg Polytechnic University
(SPbPU) under the patronage of Russian Academy of Sciences (RAS), St.Petersburg Scienti�c
Center, Ministry of Education and Science of Russian Federation (project indenti�cator RFMEFI
60715X0120) and the University of Seville (Universidad de Sevilla). APM 2018 is partially sup-
ported by Russian Foundation for Basic Research. Minisymposium in memoriam of Antonio
Castellanos Mata is partially sponsored by the Vicerrectorado de Investigacion de la Universi-
dad de Sevilla (Vice-Rectorate for Research, University of Seville, Spain).

We hope that you will �nd the materials of the conference interesting, and we cordially invite
you to participate in the coming APM conferences. You may �nd the information on the future
�Advanced Problems in Mechanics� Schools � Conferences at our website:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmen of APM 2018

Dmitri A. Indeitsev, Anton M. Krivtsov
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Abstract

In this study, we show the integrability of certain classes of dynamic sys-
tems on the tangent bundle to a four-dimensional manifold. In this case, the
force �elds have so-called variable dissipation and generalize the cases consid-
ered previously.

1 Introduction

In many problems of dynamics, mechanical systems arise with the space of positions
� a four-dimensional manifold. Their phase spaces naturally become the tangent
bundles to these manifolds. Thus, for example, the study of a �ve-dimensional
generalized spherical pendulum in a nonconservative force �eld leads to a dynamic
system on the tangent bundle to a four-dimensional sphere, while the special metric
on it is induced by an additional symmetry group. In this case, the dynamic systems
describing the motion of such a pendulum have alternating dissipation and the
complete list of �rst integrals consists of transcendental functions expressed through
a �nite combination of elementary functions.
We also single out the class of problems on the motion of a point along a four-
dimensional surface, the metric on it being induced by the Euclidean metric of
a comprehensive space. In a number of cases, the complete list of �rst integrals
consisting of transcendental functions can also be found in systems with dissipation.
The results obtained are especially important in the sense of the presence of a
precisely nonconservative force �eld in the system.

2 Equations of geodesic lines under a change of co-
ordinates and its �rst integrals

It is well known that, in the case of a four-dimensional Riemannian manifold M4

with coordinates (α, β), β = (β1, β2, β3), and a�ne connection Γijk(x) the equations

of geodesic lines on the tangent bundle T∗M4{α̇, β̇1, β̇2, β̇3;α, β1, β2, β3}, α = x1,
β1 = x2, β2 = x3, β3 = x4, x = (x1, x2, x3, x4), have the following form (the
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derivatives are taken with respect to the natural parameter):

ẍi +
4∑

j,k=1

Γijk(x)ẋjẋk = 0, i = 1, . . . , 4. (1)

Let us study the structure of Eqs. (1) under a change of coordinates on the tangent
bundle T∗M4. Consider a change of coordinates of the tangent space:

ẋi =
4∑
j=1

Rij(x)zj, (2)

which can be inverted:

zj =
4∑
i=1

Tji(x)ẋi,

here Rij, Tji, i, j = 1, . . . , 4, are functions of x1, x2, x3, x4, and

RT = E,

where

R = (Rij), T = (Tji).

We also call Eqs. (2) new kinematic relations, i.e., relations on the tangent bundle
T∗M

4.
The following equalities are valid:

żj =
4∑
i=1

Ṫjiẋ
i +

4∑
i=1

Tjiẍ
i, Ṫji =

4∑
k=1

Tji,kẋ
k, (3)

where

Tji,k =
∂Tji
∂xk

, j, i, k = 1, . . . , 4.

We also have:

żi =
4∑

j,k=1

Tij,kẋ
jẋk −

4∑
j,p,q=1

TijΓ
j
pqẋ

pẋq. (4)

Otherwise, we can rewrite Eq. (4) in the form

żi +
4∑

j,k=1

Qijkẋ
jẋk|(2) = 0, (5)

where

Qijk(x) =
4∑
s=1

Tis(x)Γsjk(x)− Tij,k(x). (6)

Proposition 2.1. System (1) is equivalent to compound system (2), (4) in a domain
where detR(x) 6= 0.

Therefore, the result of the passage from equations of geodesic lines (1) to an equiv-
alent system of equations (2), (4) depends both on the change of variables (2) (i.e.,
introduced kinematic relations) and on the a�ne connection Γijk(x).
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3 A fairly general case

Consider next a su�ciently general case of specifying kinematic relations in the
following form:

α̇ = −z4,
β̇1 = z3f1(α),

β̇2 = z2f2(α)g1(β1),

β̇3 = z1f3(α)g2(β1)h(β2),

(7)

where fk(α), k = 1, 2, 3, gl(β1), l = 1, 2, h(β2) are smooth functions on their domain
of de�nition. Such coordinates z1, z2, z3, z4 in the tangent space are introduced when
the following equations of geodesic lines are considered [1, 2, 3] (in particular, on
surfaces of revolution):


α̈ + Γα11(α, β)β̇2

1 + Γα22(α, β)β̇2
2 + Γα33(α, β)β̇2

3 = 0,

β̈1 + 2Γ1
α1(α, β)α̇β̇1 + Γ1

22(α, β)β̇2
2 + Γ1

33(α, β)β̇2
3 = 0,

β̈2 + 2Γ2
α2(α, β)α̇β̇2 + 2Γ2

12(α, β)β̇1β̇2 + Γ2
33(α, β)β̇2

3 = 0,

β̈3 + 2Γ3
α3(α, β)α̇β̇3 + 2Γ3

13(α, β)β̇1β̇3 + 2Γ3
23(α, β)β̇2β̇3 = 0,

(8)

i.e., other connection coe�cients are zero. In case (7) Eqs. (4) take the form

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

− Γ2
33(α, β)

f 2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 ,

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f 2
2 (α)

f1(α)
g21(β1)z

2
2−

− Γ1
33(α, β)

f 2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż4 = Γα11f
2
1 (α)z23 + Γα22f

2
2 (α)g21(β1)z

2
2 + Γα33f

2
3 (α)g22(β1)h

2(β2)z
2
1 ,

(9)

and Eqs. (8) are almost everywhere equivalent to compound system (7), (9) on the
manifold T∗M4{z4, z3, z2, z1;α, β1, β2, β3}.
To integrate system (7), (9) completely, it is necessary to know, generally speaking,
seven independent �rst integrals.
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Proposition 3.1. If the system of equalities

2Γ1
α1(α, β) +

d ln |f1(α)|
dα

+ Γα11(α, β)f 2
1 (α) ≡ 0,

2Γ2
α2(α, β) +

d ln |f2(α)|
dα

+ Γα22(α, β)f 2
2 (α)g21(β1) ≡ 0,[

2Γ2
12(α, β) +

d ln |g1(β1)|
dβ1

]
f 2
1 (α) + Γ1

22(α, β)f 2
2 (α)g21(β1) ≡ 0,

2Γ3
α3(α, β) +

d ln |f3(α)|
dα

+ Γα33(α, β)f 2
3 (α)g22(β1)h

2(β2) ≡ 0,[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f 2
1 (α) + Γ1

33(α, β)f 2
3 (α)g22(β1)h

2(β2) ≡ 0,[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f 2
2 (α)g21(β1) + Γ2

33(α, β)f 2
3 (α)g22(β1)h

2(β2) ≡ 0,

(10)

is valid everywhere in its domain of de�nition, system (7), (9) has an analytic �rst
integral of the form

Φ1(z4, . . . , z1) = z21 + . . .+ z24 = C2
1 = const. (11)

One can prove a special existence theorem for the solution fk(α), k = 1, 2, 3, gl(β1),
l = 1, 2, h(β2) of system (10) for the presence of analytic integral (11) for system
(7), (9) of equations of geodesic lines. Below, however, we do not need all conditions
(10) in studying dynamic systems with dissipation. Nevertheless, in what follows,
we suppose that the condition

f1(α) = f2(α) = f3(α) = f(α), (12)

is satis�ed in Eqs. (7); the functions gl(β1), l = 1, 2, h(β2) must satisfy the trans-
formed third equality from (10):

2Γ2
12(α, β) +

d ln |g1(β1)|
dβ1

+ Γ1
22(α, β)g21(β1) ≡ 0,

2Γ3
13(α, β) +

d ln |g2(β1)|
dβ1

+ Γ1
33(α, β)g22(β1)h

2(β2) ≡ 0,

2Γ3
23(α, β) +

d ln |h(β2)|
dβ2

+ Γ2
33(α, β)h2(β2) ≡ 0.

(13)

Thus, the functions gl(β1), l = 1, 2, h(β2) depend on the connection coe�cients; as
for restrictions on the function f(α) they are given below.

Proposition 3.2. If properties (12) and (13) are valid, and the equalities

Γ1
α1(α, β) = Γ2

α2(α, β) = Γ3
α3(α, β) = Γ1(α), (14)

are satis�ed, system (7), (9) has a smooth �rst integral of the following form:

Φ2(z3, z2, z1;α) =
√
z21 + z22 + z23 Φ0(α) = C2 = const, (15)

Φ0(α) = f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
.
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Proposition 3.3. If the properties in proposition 3.2 are valid, and also

g1(β1) = g2(β1) = g(β1), (16)

herewith the equalities

Γ2
12(α, β) = Γ3

13(α, β) = Γ2(β1), (17)

are valid, that system (7), (9) has a smooth �rst integral of the following form:

Φ3(z2, z1;α, β1) =
√
z21 + z22Φ0(α)Ψ1(β1) = C3 = const, (18)

Ψ1(β1) = g(β1) exp

{
2

∫ β1

β10

Γ2(b)db

}
.

Proposition 3.4. If the properties in propositions 3.2, 3.3 are valid, herewith the
equality

Γ3
23(α, β) = Γ3(β2), (19)

are valid, that system (7), (9) has a smooth �rst integral of the following form:

Φ4(z1;α, β1, β2) = z1Φ0(α)Ψ1(β1)Ψ2(β2) = C4 = const, (20)

Ψ2(β2) = h(β2) exp

{
2

∫ β2

β20

Γ3(b)db

}
.

Proposition 3.5. If the properties in propositions 3.2, 3.3, 3.4 are valid, that system
(7), (9) has a �rst integral of the following form:

Φ5(z2, z1;α, β) = β3 ±
∫ β2

β20

C4h(b)√
C2

3Φ2
2(b)− C2

4

db = C5 = const. (21)

Under the conditions listed above, system (7), (9) has a complete set (�ve) of inde-
pendent �rst integrals of the form (11), (15), (18), (20), and (21).

4 Equations of motion on the tangent bundle of a
three-dimensional manifold in a potential �eld of
force and its �rst integrals

Let us now somewhat modify system (7), (9) under conditions (12)�(14), (16), (17),
and (19), which yields a conservative system. Namely, the presence of the force �eld
is characterized by the coe�cient F (α) in the second equation of system (22). The
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system under consideration on the tangent bundle T∗M4{z4, z3, z2, z1;α, β1, β2, β3}
takes the form

α̇ = −z4,
ż4 = F (α) + Γα11f

2
1 (α)z23 + Γα22f

2
2 (α)g21(β1)z

2
2 + Γα33f

2
3 (α)g22(β1)h

2(β2)z
2
1 ,

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f 2
2 (α)

f1(α)
g21(β1)z

2
2−

− Γ1
33(α, β)

f 2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

− Γ2
33(α, β)

f 2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 ,

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

β̇1 = z3f(α),

β̇2 = z2f(α)g(β1),

β̇3 = z1f(α)g(β1)h(β2),

(22)

and it is almost everywhere equivalent to the following system:
α̈ + F (α) + Γα11(α, β)β̇2

1 + Γα22(α, β)β̇2
2 + Γα33(α, β)β̇2

3 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇2

2 + Γ1
33(α, β)β̇2

3 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇2

3 = 0,

β̈3 + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0.

Proposition 4.1. If the conditions of Proposition 3.1 are satis�ed, system (22) has
a smooth �rst integral of the following form:

Φ1(z4, . . . , z1;α) = z21 + . . .+z24 +F1(α) = C1 = const, F1(α) = 2

∫ α

α0

F (a)da. (23)

Proposition 4.2. If the conditions of Propositions 3.2, 3.3, and 3.4 are satis�ed,
system (22) has three smooth �rst integrals of form (15), (18), and (20).

Proposition 4.3. If the conditions of Proposition 3.5 are satis�ed, system (22) has
�rst integral of form (21).

Under the conditions listed above, system (22) has a complete set of (�ve) indepen-
dent �rst integrals of form (23), (15), (18), (20), and (21).
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5 Equations of motion on the tangent bundle of a
two-dimensional manifold in a force �eld with dis-
sipation and its �rst integrals

Let us now consider system (24). In doing this, we obtain a system with dissipa-
tion. Namely, the presence of dissipation (generally speaking, sign-alternating) is
characterized by the coe�cient bδ(α) in the �rst equation of system (24):

α̇ = −z4 + bδ(α),

ż4 = F (α) + Γα11f
2
1 (α)z23 + Γα22f

2
2 (α)g21(β1)z

2
2 + Γα33f

2
3 (α)g22(β1)h

2(β2)z
2
1 ,

ż3 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z3z4 − Γ1

22(α, β)
f 2
2 (α)

f1(α)
g21(β1)z

2
2−

− Γ1
33(α, β)

f 2
3 (α)

f1(α)
g22(β1)h

2(β2)z
2
1 ,

ż2 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z2z4 −

[
2Γ2

12(α, β) +
d ln |g1(β1)|

dβ1

]
f1(α)z2z3−

− Γ2
33(α, β)

f 2
3 (α)

f2(α)

g22(β1)

g1(β1)
h2(β2)z

2
1 ,

ż1 =

[
2Γ3

α3(α, β) +
d ln |f3(α)|

dα

]
z1z4 −

[
2Γ3

13(α, β) +
d ln |g2(β1)|

dβ1

]
f1(α)z1z3−

−
[
2Γ3

23(α, β) +
d ln |h(β2)|

dβ2

]
f2(α)g1(β1)z1z2,

β̇1 = z3f(α),

β̇2 = z2f(α)g(β1),

β̇3 = z1f(α)g(β1)h(β2),

(24)

which is almost everywhere equivalent to the following system

α̈− bα̇δ′(α) + F (α) + Γα11(α, β)β̇2
1 + Γα22(α, β)β̇2

2 + Γα33(α, β)β̇2
3 = 0,

β̈1 − bβ̇1δ(α)W (α) + 2Γ1(α)α̇β̇1 + Γ1
22(α, β)β̇2

2 + Γ1
33(α, β)β̇2

3 = 0,

β̈2 − bβ̇2δ(α)W (α) + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 + Γ2
33(α, β)β̇2

3 = 0,

β̈3 − bβ̇3δ(α)W (α) + 2Γ1(α)α̇β̇3 + 2Γ2(β1)β̇1β̇3 + 2Γ3(β2)β̇2β̇3 = 0,

W (α) = 2Γ1
α1(α, β) +

d ln |f1(α)|
dα

.

Now we pass to integration of the sought six-order system (24) under condition (13),
as well as under the equalities

Γα11(α, β) = Γα22(α, β)g2(β1) = Γα33(α, β)g2(β1)h
2(β2) = Γ4(α), (25)

hold.
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We also introduce (by analogy with (13)) a restriction on the function f(α). It must
satisfy the transformed �rst equality from (10):

2Γ1(α) +
d ln |f(α)|

dα
+ Γ4(α)f 2(α) ≡ 0. (26)

To integrate it completely, one should know, generally speaking, seven independent
�rst integrals. However, after the following change of variables,

w4 = z4, w3 =
√
z21 + z22 + z23 , w2 =

z2
z1
, w1 =

z3√
z21 + z22

,

system (24) decomposes as follows:
α̇ = −w4 + bδ(α),

ẇ4 = F (α) + Γ4(α)f 2(α)w2
3,

ẇ3 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
w3w4,

(27)


ẇ2 = ±w3

√
1 + w2

2f(α)g(β1)

[
2Γ3(β2) +

d ln |h(β2)|
dβ2

]
,

β̇2 = ± w2w3√
1 + w2

2

f(α)g(β1),
(28)


ẇ1 = ±w3

√
1 + w2

1f(α)

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± w1w3√
1 + w2

1

f(α),
(29)

β̇3 = ± w3√
1 + w2

2

f(α)g(β1)h(β2). (30)

It is seen that to integrate system (27)�(30) completely, it is su�cient to determine
two independent �rst integrals of system (27), by one integral of systems (28) and
(29), and an additional �rst integral �attaching� Eq. (30) (i.e., �ve integrals in total).

Theorem 5.1. Let the equalities

Γ4(α)f 2(α) = κ
d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
(31)

be valid for some κ, λ ∈ R. Then system (24) under equalities (12), (13), (16), (25),
and (26) has a complete set of (�ve) independent, generally speaking, transcendental
�rst integrals.

6 Conclusions

By analogy with low-dimensional cases, we pay special attention to two important
cases for the function f(α) de�ning the metric on a sphere:

f(α) =
cosα

sinα
, (32)
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f(α) =
1

cosα sinα
. (33)

Case (32) forms a class of systems corresponding to the motion of a dynamically
symmetric �ve-dimensional solid body at zero levels of cyclic integrals, generally
speaking, in a nonconservative �eld of forces [3, 4, 5]. Case (33) forms a class
of systems corresponding to the motion of a material point on a four-dimensional
sphere also, generally speaking, in a nonconservative �eld of forces. In particular,
at δ(α) ≡ F (α) ≡ 0 the system under consideration describes a geodesic �ow on a
four-dimensional sphere. In case (32), if

δ(α) =
F (α)

cosα
,

the system describes the spatial motion of a �ve-dimensional solid body in the force
�eld F (α) under the action of a tracking force [6, 7, 8]. In particular, if

F (α) = sinα cosα, δ(α) = sinα,

the system also describes a generalized �ve-dimensional spherical pendulum in a
nonconservative force �eld and has a complete set of transcendental �rst integrals
that can be expressed in terms of a �nite combination of elementary functions [9,
10, 11].
If the function δ(α) is not periodic, the dissipative system under consideration is a
system with variable dissipation with a zero mean (i.e., it is properly dissipative).
Nevertheless, an explicit form of transcendental �rst integrals that can be expressed
in terms of a �nite combination of elementary functions can be obtained even in
this case. This is a new nontrivial case of integrability of dissipative systems in an
explicit form [12].
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