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Abstract—In this work, the integrability of some classes of dy-
namic systems on tangent bundles of three-dimensional manifolds
is demonstrated. The corresponding force fields possess the so-
called variable dissipation and generalize those considered earlier.

I. INTRODUCTION

In many problems of dynamics, there appear mechanical
systems with three-dimensional manifolds as position spaces.
Tangent bundles of such manifolds naturally become phase
spaces of such systems. For example, study of a four-
dimensional generalized spherical pendulum in a nonconserva-
tive force field leads to a dynamic system on the tangent bundle
of a three-dimensional sphere, and the metric of special form
on it is induced by an additional symmetry group [1], [2]. In
this case, dynamic systems describing the motion of such a
pendulum possess alternating dissipation and the complete list
of first integrals consists of transcendental functions that can
be expressed in terms of a finite combination of elementary
functions [2], [3].

The class of problems about the motion of a point on a
three-dimensional surface is also known; the metric on it is
induced by the Euclidean metric of the ambient space. In some
cases of systems with dissipation, it is also possible to find a
complete list of first integrals; the list consists of transcenden-
tal functions. The results obtained are especially important in
the aspect of the presence of just a nonconservative force field
in the system.

II. EQUATIONS OF GEODESIC LINES

It is well known that, in the case of a three-dimensional Rie-
mannian manifold M3 with coordinates (α, β), β = (β1, β2),
and affine connection Γijk(x) the equations of geodesic lines
on the tangent bundle T∗M

3{α̇, β̇1, β̇2;α, β1, β2}, α = x1,
β1 = x2, β2 = x3, x = (x1, x2, x3), have the following
form (the derivatives are taken with respect to the natural
parameter):

ẍi +
3∑

j,k=1

Γijk(x)ẋj ẋk = 0, i = 1, 2, 3. (1)
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Let us study the structure of Eqs. (1) under a change of
coordinates on the tangent bundle T∗M3. Consider a change
of coordinates of the tangent space:

ẋi =
3∑
j=1

Rij(x)zj , (2)

which can be inverted:

zj =

3∑
i=1

Tji(x)ẋi,

herewith Rij , Tji, i, j = 1, 2, 3, are functions of x1, x2, x3,
and

RT = E,

R = (Rij), T = (Tji).

We also call Eqs. (2) new kinematic relations, i.e., relations
on the tangent bundle T∗M3.

The following equalities are valid:

żj =
3∑
i=1

Ṫjiẋ
i +

3∑
i=1

Tjiẍ
i, Ṫji =

3∑
k=1

Tji,kẋ
k, (3)

Tji,k =
∂Tji
∂xk

, j, i, k = 1, 2, 3.

If we substitute Eqs. (1) to Eqs. (3), we have:

żi =
3∑

j,k=1

Tij,kẋ
j ẋk −

3∑
j,p,q=1

TijΓ
j
pqẋ

pẋq, (4)

in the last system, one should substitute formulas (2) instead
of ẋi, i = 1, 2, 3,.

Furthermore, Eq. (4) we can rewrite:

żi +
3∑

j,k=1

Qijkẋ
j ẋk|(2) = 0, (5)

Qijk(x) =
3∑
s=1

Tis(x)Γsjk(x)− Tij,k(x). (6)

Proposition 1: System (1) is equivalent to compound system
(2), (4) in a domain where detR(x) 6= 0.

Therefore, the result of the passage from equations of
geodesic lines (1) to an equivalent system of equations (2), (4)
depends both on the change of variables (2) (i.e., introduced
kinematic relations) and on the affine connection Γijk(x).
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III. A FAIRLY GENERAL CASE

Consider next a sufficiently general case of specifying
kinematic relations in the following form:

α̇ = −z3,
β̇1 = z2f1(α),

β̇2 = z1f2(α)g(β1),

(7)

where f1(α), f2(α), g(β1) are smooth functions on their
domain of definition. Such coordinates z1, z2, z3 in the tangent
space are introduced when the following equations of geodesic
lines are considered [4], [5] (in particular, on surfaces of
revolution):

α̈+ Γα11(α, β)β̇2
1 + Γα22(α, β)β̇2

2 = 0,

β̈1 + 2Γ1
α1(α, β)α̇β̇1 + Γ1

22(α, β)β̇2
2 = 0,

β̈2 + 2Γ2
α2(α, β)α̇β̇2 + 2Γ2

12(α, β)β̇1β̇2 = 0,

(8)

i.e., other connection coefficients are zero. In case (7), Eqs.
(4) take the form

ż1 =

[
2Γ2

α2(α, β) +
d ln |f2(α)|

dα

]
z1z3−[

2Γ2
12(α, β) +

d ln |g(β1)|
dβ1

]
f1(α)z1z2,

ż2 =

[
2Γ1

α1(α, β) +
d ln |f1(α)|

dα

]
z2z3−

Γ1
22(α, β)

f22 (α)

f1(α)
g2(β1)z21 ,

ż3 = Γα11f
2
1 (α)z22 + Γα22f

2
2 (α)g2(β1)z21 ,

(9)

and Eqs. (8) are almost everywhere equivalent to compound
system (7), (9) on the manifold T∗M3{z3, z2, z1;α, β1, β2}.

To integrate system (7), (9) completely, it is necessary to
know, generally speaking, five independent first integrals.

Proposition 2: If the system of equalities

2Γ1
α1(α, β) +

d ln |f1(α)|
dα

+ Γα11(α, β)f21 (α) ≡ 0,

2Γ2
α2(α, β)+

+
d ln |f2(α)|

dα
+ Γα22(α, β)f22 (α)g2(β1) ≡ 0,[

2Γ2
12(α, β) +

d ln |g(β1)|
dβ1

]
f21 (α)+

+ Γ1
22(α, β)f22 (α)g2(β1) ≡ 0,

(10)

is valid everywhere in its domain of definition, system (7), (9)
has an analytic first integral of the form

Φ1(z3, z2, z1) = z21 + z22 + z23 = C2
1 = const. (11)

We suppose that the condition

f1(α) = f2(α) = f(α), (12)

is satisfied in Eqs. (7); the function g(β1) must satisfy the
transformed third equality from (10):

2Γ2
12(α, β) +

d ln |g(β1)|
dβ1

+ Γ1
22(α, β)g2(β1) ≡ 0. (13)

Proposition 3: If properties (12) and (13) are valid and the
equalities

Γ1
α1(α, β) = Γ2

α2(α, β) = Γ1(α), (14)

are satisfied, system (7), (9) has a smooth first integral of the
following form:

Φ2(z2, z1;α) =
√
z21 + z22 Φ0(α) = C2 = const, (15)

Φ0(α) = f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
.

Proposition 4: If property (12) is valid and the equality

Γ2
12(α, β) = Γ2(β1), (16)

and the second equality from (14) (Γ2
α2(α, β) = Γ1(α)) are

satisfied, system (7), (9) has a smooth first integral of the
following form:

Φ3(z1;α, β1) = z1Φ0(α)Φ(β1) = C3 = const, (17)

Φ(β1) = g(β1) exp

{
2

∫ β1

β10

Γ2(b)db

}
.

Proposition 5: If conditions (12), (13), (14), (16) are satis-
fied, system (7), (9) has a first integral of the following form:

Φ4(z2, z1;β) = β2±
∫ β1

β10

C3g(b)√
C2

2Φ2(b)− C2
3

db = C4 = (18)

= const,

where, after taking integral (18), one should substitute the left-
hand sides of equalities (15), (17) instead of the constants
C2, C3, respectively.

Under the conditions listed above, system (7), (9) has a
complete set (four) of independent first integrals of the form
(11), (15), (17), (18).

IV. POTENTIAL FIELD OF FORCE

Let us now somewhat modify system (7), (9) under condi-
tions (12), (13), (14), (16), which yields a conservative system.
Namely, the presence of the force field is characterized by
the coefficient F (α) in the second equation of system (19) at
b = 0. The system under consideration on the tangent bundle
T∗M

3{z3, z2, z1;α, β1, β2} takes the form

α̇ = −z3 + bδ(α),

ż3 = F (α) + Γα11(α, β)f2(α)z22+

Γα22(α, β)f2(α)g2(β1)z21 ,

ż2 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
z2z3−

Γ1
22(β1)f(α)g2(β1)z21 ,

ż1 =

[
2Γ1(α) +

d ln |f(α)|
dα

]
z1z3−[

2Γ2(β1) +
d ln |g(β1)|

dβ1

]
f(α)z1z2,

β̇1 = z2f(α),

β̇2 = z1f(α)g(β1),

(19)



and at b = 0 it is almost everywhere equivalent to the
following system:

α̈+ F (α) + Γα11(α, β)β̇2
1 + Γα22(α, β)β̇2

2 = 0,

β̈1 + 2Γ1(α)α̇β̇1 + Γ1
22(β1)β̇2

2 = 0,

β̈2 + 2Γ1(α)α̇β̇2 + 2Γ2(β1)β̇1β̇2 = 0.

Proposition 6: If the conditions of Proposition (2) are
satisfied, system (19) at b = 0 has a smooth first integral
of the following form:

Φ1(z3, z2, z1;α) = z21 + z22 + z23 + F1(α) = (20)

= C1 = const, F1(α) = 2

∫ α

α0

F (a)da.

Proposition 7: If the conditions of Propositions (3), (4) are
satisfied, system (19) at b = 0 has two smooth first integrals
of form (15), (17).

Proposition 8: If the conditions of Proposition (5) are
satisfied, system (19) at b = 0 has a first integral of form
(18).

Under the conditions listed above, system (19) at b = 0 has
a complete set of (four) independent first integrals of form
(20), (15), (17), (18).

V. FORCE FIELD WITH DISSIPATION

Let us now consider system (19) at b 6= 0. In doing this,
we obtain a system with dissipation. Namely, the presence of
dissipation (generally speaking, sign-alternating) is character-
ized by the coefficient bδ(α) in the first equation of system
(19), which is almost everywhere equivalent to the following
system:

α̈− bα̇δ′(α) + F (α) + Γα11(α, β)β̇2
1 + Γα22(α, β)β̇2

2 = 0,

β̈1 − bβ̇1δ(α)

[
2Γ1(α) +

d ln |f(α)|
dα

]
+

2Γ1(α)α̇β̇1 + Γ1
22(β1)β̇2

2 = 0,

β̈2 − bβ̇2δ(α)

[
2Γ1(α) +

d ln |f(α)|
dα

]
+ 2Γ1(α)α̇β̇2+

2Γ2(β1)β̇1β̇2 = 0.

Now we pass to integration of the sought six-order system
(19) under condition (13), as well as under the equalities

Γα11(α, β) = Γα22(α, β)g2(β1) = Γ3(α). (21)

We also introduce (by analogy with (13)) a restriction on
the function f(α). It must satisfy the transformed first equality
from (10):

2Γ1(α) +
d ln |f(α)|

dα
+ Γ3(α)f2(α) ≡ 0. (22)

To integrate it completely, one should know, generally
speaking, five independent first integrals. However, after the
following change of variables,

z1, z2 → z, z∗, z =
√
z21 + z22 , z∗ =

z2
z1
,

system (19) decomposes as follows:
α̇ = −z3 + bδ(α),

ż3 = F (α) + Γ3(α)f2(α)z2,

ż =

[
2Γ1(α) +

d ln |f(α)|
dα

]
zz3,

(23)


ż∗ = ±z

√
1 + z2∗f(α)

[
2Γ2(β1) +

d ln |g(β1)|
dβ1

]
,

β̇1 = ± zz∗√
1 + z2∗

f(α),
(24)

β̇2 = ± z√
1 + z2∗

f(α)g(β1). (25)

It is seen that to integrate system (23)–(25) completely, it
is sufficient to determine two independent first integrals of
system (23), one integral of system (24), and an additional
first integral attaching Eq. (25) (i.e., four integrals in total).

Theorem 1: Let the equalities

Γ3(α)f2(α) = κ
d

dα
ln |δ(α)|, F (α) = λ

d

dα

δ2(α)

2
(26)

be valid for some κ, λ ∈ R. Then system (19) under equalities
(13), (21), (22) has a complete set of (four) independent,
generally speaking, transcendental first integrals.

In the general case, the first integrals are written awkwardly.
In particular, if κ = −1, the explicit form of one of first
integrals for system (23) is as follows:

Θ1(z3, z;α) = G1

(
z3
δ(α)

,
z

δ(α)

)
= (27)

=
z23 + z2 − bz3δ(α) + λδ2(α)

zδ(α)
= C1 = const.

Here, the additional first integral for system (23) has the
following structural form:

Θ2(z3, z;α) = G2

(
δ(α),

z3
δ(α)

,
z

δ(α)

)
= C2 = const. (28)

Here, after taking the integral, one should substitute the left-
hand side of equality (27) for C1. The right-hand side of
this equality is expressed through a finite combination of
elementary functions; the left-hand part, depending on the
function δ(α). Therefore, expressing first integrals (27), (28)
through a finite combination of elementary functions depends
not only on calculation of quadratures but also on the explicit
form of the function δ(α).

The first integral for system (24) has the form

Θ3(z∗;β1) =

√
1 + z2∗

Φ(β1)
= C3 = const, (29)

as for the function Φ(β1), see (17). The additional first integral
attaching Eq. (25) is found by analogy with (18):

Θ4(z∗;β) = β2 ±
∫ β1

β10

g(b)√
C2

3Φ2(b)− 1
db = C4 = const,

here, after taking this integral, one should substitute the left-
hand side of equality (29) for C3.



VI. STRUCTURE OF TRANSCENDENTAL FIRST INTEGRALS

If α is a periodic coordinate with a period of 2π, system
(23) becomes a dynamic system with variable dissipation with
a zero mean [1]–[3]. At b = 0, it turns into a conservative
system having two smooth first integrals of form (20), (15).
By virtue of (26),

Φ1(z3, z2, z1;α) =

= z21 + z22 + z23 + 2

∫ α

α0

F (a)da ∼= z2 + z23 + λδ2(α), (30)

where “∼=” means equality up to an additive constant. At the
same time, by virtue of (22) and (26),

Φ2(z2, z1;α) =

=
√
z21 + z22 f(α) exp

{
2

∫ α

α0

Γ1(b)db

}
∼= zδ(α) = (31)

= C2 = const,

where “∼=” now means equality up to a multiplicative additive
constant.

It is evident that the ratio of the two first integrals (30) and
(31) (or, (20) and (15)) is also a first integral of system (23)
for b = 0. However, at b 6= 0, each of the functions

z2 + z23 − bz3δ(α) + λδ2(α) (32)

and (31) taken individually is not a first integral of system
(23). However, the ratio of functions (32) and (31) is a first
integral of system (23) (at κ = −1) for any b.

Generally, for systems with dissipation, transcendence of
functions (in the aspect of the presence of essentially singular
points) as first integrals is inherited from the existence of
attracting and repelling limit sets in the system [1], [3], [6].

VII. CONCLUSIONS

By analogy with low-dimensional cases, we pay special
attention to two important cases for the function f(α) defining
the metric on a sphere:

f(α) =
cosα

sinα
, (33)

f(α) =
1

cosα sinα
. (34)

Case (33) forms a class of systems corresponding to the
motion of a dynamically symmetric four-dimensional solid
body at zero levels of cyclic integrals, generally speaking, in a
nonconservative field of forces [7], [8]. Case (34) forms a class
of systems corresponding to the motion of a material point on
a three-dimensional sphere also, generally speaking, in a non-
conservative field of forces. In particular, at δ(α) ≡ F (α) ≡ 0,
the system under consideration describes a geodesic flow
on a three-dimensional sphere. In case (33), if , the system
describes the spatial motion of a four-dimensional solid body
in the force field under the action of a tracking force [1]–[3].
In particular, if δ(α) = F (α)/ cosα, and δ(α) = sinα,, the
system also describes a generalized four-dimensional spherical
pendulum in a nonconservative force field and has a complete

set of transcendental first integrals that can be expressed in
terms of a finite combination of elementary functions [2], [3],
[7], [8].

If the function δ(α) is not periodic, the dissipative system
under consideration is a system with variable dissipation with
a zero mean (i.e., it is properly dissipative). Nevertheless,
an explicit form of transcendental first integrals that can be
expressed in terms of a finite combination of elementary
functions can be obtained even in this case. This is a new
nontrivial case of integrability of dissipative systems in an
explicit form.
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