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Preface

Dear Reader,

in this book you will �nd the Proceedings of the Summer School � Conference �Advanced Problems
in Mechanics (APM) 2017�. The conference had been started in 1971. The �rst Summer School
was organized by Prof. Ya.G. Panovko and his colleagues. In the early years the main focus of
the School was on nonlinear oscillations of mechanical systems with a �nite number of degrees of
freedom. Since 1994 the Institute for Problems in Mechanical Engineering of the Russian Academy
of Sciences organizes the Summer School. The traditional name of �Summer School � has been kept,
but the topics covered by the School have been much widened, and the School has been transformed
into an international conference. Now it is held under the patronage of the Russian Academy of
Sciences. The topics of the conference cover now almost all �elds of mechanics, being concentrated
around the following main scienti�c directions:

� aerospace mechanics;
� computational mechanics;
� dynamics of rigid bodies and multibody dynamics;
� �uid and gas;
� mechanical and civil engineering applications;
� mechanics of media with microstructure;
� mechanics of granular media;
� nanomechanics;
� nonlinear dynamics, chaos and vibration;
� molecular and particle dynamics;
� phase transitions;
� solids and structures;
� wave motion.

The Summer School � Conference has two main purposes: to gather specialists from di�erent
branches of mechanics to provide a platform for cross-fertilization of ideas, and to give the young
scientists a possibility to learn from their colleagues and to present their work. Thus the Scienti�c
Committee encouraged the participation of young researchers, and did its best to gather at the
conference leading scientists belonging to various scienti�c schools of the world.

We believe that the signi�cance of Mechanics as of fundamental and applied science should much
increase in the eyes of the world scienti�c community, and we hope that APM conference makes
its contribution into this process.

The Conference is organized by Institute for Problems in Mechanical Engineering of Russian
Academy of Sciences (IPME RAS) and Peter the Great St.Petersburg Polytechnic University
(SPbPU) under the patronage of Russian Academy of Sciences (RAS), St.Petersburg Scienti�c
Center, Ministry of Education and Science of Russian Federation and the University of Seville
(Universidad de Sevilla). APM 2017 is partially supported by Russian Foundation for Basic Re-
search. Minisymposium in memoriam of Antonio Castellanos Mata is partially sponsored by the
Vicerrectorado de Investigacion de la Universidad de Sevilla (Vice-Rectorate for Research, Univer-
sity of Seville, Spain).

We hope that you will �nd the materials of the conference interesting, and we cordially invite
you to participate in the coming APM conferences. You may �nd the information on the future
�Advanced Problems in Mechanics� Schools � Conferences at our website:

http://apm-conf.spb.ru

With kind regards,

Co-Chairmen of APM 2017

Dmitri A. Indeitsev, Anton M. Krivtsov



Cases of integrability corresponding to the motion of a pendulum in the
four-dimensional space

Cases of integrability corresponding to the motion

of a pendulum in the four-dimensional space

Maxim V. Shamolin

shamolin@rambler.ru, shamolin@imec.msu.ru

Abstract

In this activity, we systematize some results on the study of the equations
of a motion of dynamically symmetric four-dimensional �xed rigid bodies-
pendulums located in a nonconservative force �elds. The form of these equa-
tions is taken from the dynamics of real �xed rigid bodies placed in a homoge-
neous �ow of a medium. In parallel, we study the problem of a motion of a free
four-dimensional rigid body also located in a similar force �elds. Herewith,
this free rigid body is in�uenced by a nonconservative tracing force; under
action of this force, either the magnitude of the velocity of some characteristic
point of the body remains constant, which means that the system possesses a
nonintegrable servo constraint, or the center of mass of the body moves recti-
linearly and uniformly; this means that there exists a nonconservative couple
of forces in the system.

1 Introduction

Earlier (see [1, 2]), the author already proved the complete integrability of the equa-
tions of a plane-parallel motion of a �xed rigid body�pendulum in a homogeneous
�ow of a medium under the jet �ow conditions when the system of dynamical equa-
tions possesses a �rst integral, which is a transcendental (in the sense of the theory
of functions of a complex variable, i.e., it has essential singularities) function of
quasi-velocities. It was assumed that the interaction of the medium with the body
is concentrated on a part of the surface of the body that has the form of a (one-
dimensional) plate. In [2, 3], the planar problem was generalized to the spatial
(three-dimensional) case, where the system of dynamical equations has a complete
set of transcendental �rst integrals. It was assumed that the interaction of the homo-
geneous medium �ow with the �xed body (the spherical pendulum) is concentrated
on a part of the body surface that has the form of a planar (two-dimensional) disk.
Later on (see [4, 5]), the equations of motion of the �xed dynamically symmetric
four-dimensional rigid bodies, where the force �eld is concentrated on a part of the
body surface that has the form of a (three-dimensional) disk.
In this activity, the results relate to the case where all interaction of the homogeneous
�ow of a medium with the �xed body is concentrated on that part of the surface
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of the body, which has the form of a three-dimensional disk, and the action of the
force is concentrated in a direction perpendicular to this disk. These results are
systematized and are presented in invariant form.

2 Model assumptions

Let consider the homogeneous three-dimensional disk D3 (with the center in the
point D), the hyperplane of which perpendicular to the holder OD in the four-
dimensional Euclidean space E4. The disk is rigidly �xed perpendicular to the
tool holder OD located on the (generalized) spherical hinge O, and it �ows about
homogeneous �uid �ow. In this case, the body is a physical (generalized spherical)
pendulum. The medium �ow moves from in�nity with constant velocity v = v∞ 6= 0.
Assume that the holder does not create a resistance.
We suppose that the total force S of medium �ow interaction perpendicular to the
disk D3, and point N of application of this force is determined by at least the angle
of attack α, which is made by the velocity vector vD of the point D with respect
to the �ow and the holder OD; the total force is also determined by the angles
β1, β2, which are made in the hyperplane of the disk D3 (thus, (v, α, β1, β2) are the
(generalized) spherical coordinates of the tip of the vector vD), and also the reduced
angular velocity tensor ω̃ ∼= lΩ̃/vD, vD = |vD| (l is the length of the holder, Ω̃ is
the angular velocity tensor of the pendulum). Such conditions generalize the model
of streamline �ow around spatial bodies [3, 5, 6].
The vector e = OD/l determines the orientation of the holder. Then S = s(α)v2

De,
where s(α) = s1(α)sign cosα, and the resistance coe�cient s1 ≥ 0 depends only on
the angle of attack α. By the axe-symmetry properties of the body�pendulum with
respect to the point D, the function s(α) is even.
Let Dx1x2x3x4 be the coordinate system rigidly attached to the body, herewith,
the axis Dx1 has a direction vector e, and the axes Dx2, Dx3 and Dx4 lie in the
hyperplane of the disk D3.
By the angles (ξ, η1, η2), we de�ne the position of the holder OD in the four-
dimensional space E4. In this case, the angle ξ is made by the holder and the
direction of the over-running medium �ow. In other words, the angles introduced
are the (generalized) spherical coordinates of the point D of the center of a disk D3

on the three-dimensional sphere of the constant radius OD.
The space of positions of this (generalized) spherical (physical) pendulum is the
three-dimensional sphere

S3{(ξ, η1, η2) ∈ R3 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}, (1)

and its phase space is the tangent bundle of the three-dimensional sphere

T∗S
3{(ξ̇, η̇1, η̇2; ξ, η1, η2) ∈ R6 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}. (2)

The tensor (of the second-rank) Ω̃ of the angular velocity in the coordinate system
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Dx1x2x3x4, we de�ne through the skew-symmetric matrix

Ω̃ =


0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

 , Ω̃ ∈ so(4). (3)

The distance from the center D of the disk D3 to the center of pressure (the point
N) has the form |rN |= rN = DN (α, β1, β2, lΩ/vD) , where rN = {0, x2N , x3N , x4N}
in system Dx1x2x3x4 (we omit the wave over Ω).

3 Set of dynamical equations in Lie algebra so(4)

Let a four-dimensional rigid body Θ of mass m with smooth three-dimensional
boundary ∂Θ be under the in�uence of a nonconservative force �eld; this can be
interpreted as a motion of the body in a resisting medium that �lls up the four-
dimensional domain of Euclidean space E4. We assume that the body is dynamically
symmetric. In this case, there are two logical possibilities of the representation of its
inertia tensor in the case of existence of two independent equations on the principal
moments of inertia; i.e., either in some coordinate system Dx1x2x3x4 attached to
the body, the operator of inertia has the form

diag{I1, I2, I2, I2}, (4)

or the form diag{I1, I1, I3, I3}. In the �rst case, the body is dynamically symmetric in
the hyperplane Dx2x3x4 and in the second case, the two-dimensional planes Dx1x2

and Dx3x4 are planes of dynamical symmetry of the body.
The con�guration space of a free, n-dimensional rigid body is the direct product
Rn × SO(n) of the space Rn, which de�nes the coordinates of the center of mass
of the body, and the rotation group SO(n), which de�nes the rotations of the body
about its center of mass and has dimension n+ n(n− 1)/2 = n(n+ 1)/2.
Respectively, the dimension of the phase space is equal to n(n+ 1).
In particular, if Ω is the tensor of angular velocity of a four-dimensional rigid body
(it is a second-rank tensor, see [3, 6, 7, 8]), Ω ∈ so(4), then the part of the dynamical
equations of motion corresponding to the Lie algebra so(4) has the following form
(see [9, 10, 11, 12]):

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (5)

Λ = diag{λ1, λ2, λ3, λ4}, λ1 =
−I1 + I2 + I3 + I4

2
,

λ2 =
I1 − I2 + I3 + I4

2
, λ3 =

I1 + I2 − I3 + I4

2
, λ4 =

I1 + I2 + I3 − I4

2
,

M = MF is the natural projection of the moment of external forces F acting on
the body in R4 on the natural coordinates of the Lie algebra so(4) and [., .] is the
commutator in so(4). The skew-symmetric matrix corresponding to this second-rank
tensor Ω ∈ so(4) we represent in the form (3), where ω1, ω2, ω3, ω4, ω5, ω6 are
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the components of the tensor of angular velocity corresponding to the projections
on the coordinates of the Lie algebra so(4).
In this case, obviously, the following relations hold: λi − λj = Ij − Ii for any
i, j = 1, . . . , 4.
For the calculation of the moment of an external force acting on the body, we
need to construct the mapping R4 × R4 −→ so(4), than maps a pair of vectors
(DN,F) ∈ R4 × R4 from R4 × R4 to an element of the Lie algebra so(4), where
DN = {0, x2N , x3N , x4N}, F = {F1, F2, F3, F4}, and F is an external force acting on
the body. For this end, we construct the following auxiliary matrix(

0 x2N x3N x4N

F1 F2 F3 F4

)
.

Then the right-hand side of system (5) takes the form

M = {M1,M2,M3,M4,M5,M6} =

= {x3NF4 − x4NF3, x4NF2 − x2NF4,−x4NF1, x2NF3 − x3NF2, x3NF1,−x2NF1},

where M1, M2, M3, M4, M5, M6 are the components of tensor of the moment of
external forces in the projections on the coordinates in the Lie algebra so(4),

M =


0 −M6 M5 −M3

M6 0 −M4 M2

−M5 M4 0 −M1

M3 −M2 M1 0

 .

In our case of a �xed pendulum, the case (4) is realized. Then the dynamical part
of the equations of its motion has the following form:

(I1 + I2)ω̇1 = 0, (I1 + I2)ω̇2 = 0,

2I2ω̇3 + (I1 − I2)(ω2ω6 + ω1ω5) = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2,

(I1 + I2)ω̇4 = 0,

2I2ω̇5 + (I1 − I2)(ω4ω6 − ω1ω3) = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2,

2I2ω̇6 + (I2 − I1)(ω4ω5 + ω2ω3) = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2,

(6)

since the moment of the medium interaction force is determined by the following
auxiliary matrix: (

0 x2N x3N x4N

−s(α)v2
D 0 0 0

)
,

where {−s(α)v2
D, 0, 0, 0} is the decomposition of the force S of medium interaction

in the coordinate system Dx1x2x3x4.
Since the dimension of the Lie algebra so(4) is equal to 6, the system of equations
(6) is a group of dynamical equations on so(4), and, simply speaking, the motion
equations.
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We see, that in the right-hand side of Eq. (6), �rst of all, it includes the angles
α, β1, β2, therefore, this system of equations is not closed. In order to obtain a
complete system of equations of motion of the pendulum, it is necessary to attach
several sets of kinematic equations to the dynamic equations on the Lie algebra
so(4).

3.1 Cyclic �rst integrals

We immediately note that the system (6), by the existing dynamic symmetry

I2 = I3 = I4, (7)

possesses three cyclic �rst integrals

ω1 ≡ ω0
1 = const, ω2 ≡ ω0

2 = const, ω4 ≡ ω0
4 = const. (8)

In this case, further, we consider the dynamics of our system at zero levels:

ω0
1 = ω0

2 = ω0
4 = 0. (9)

Under conditions (7)�(9) the system (6) has the form of unclosed system of three
equations:

2I2ω̇3 = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, 2I2ω̇5 = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2,

2I2ω̇6 = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2.

(10)

4 First set of kinematic equations

In order to obtain a complete system of equations of motion, it needs the set of
kinematic equations which relate the velocities of the point D (i.e., the center of the
disk D3) and the over-running medium �ow:

vD = vD · iv(α, β1, β2) = Ω̃l + (−v∞)iv(−ξ, η1, η2), l = {l, 0, 0, 0}, (11)

iv(α, β1, β2) =


cosα

sinα cos β1

sinα sin β1 cos β2

sinα sin β1 sin β2

 . (12)

The equation (11) expresses the theorem of addition of velocities in projections on
the related coordinate system Dx1x2x3x4.
Indeed, the left-hand side of Eq. (11) is the velocity of the point D of the pendu-
lum with respect to the �ow in the projections on the related with the pendulum
coordinate system Dx1x2x3x4. Herewith, the vector iv(α, β1, β2) is the unit vector
along the axis of the vector vD. The vector iv(α, β1, β2) has the spherical coordinates
(1, α, β1, β2) which determines the decomposition (12).
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The right-hand side of the Eq. (11) is the sum of the velocities of the point D when
you rotate the pendulum (the �rst term), and the motion of the �ow (the second
term). In this case, in the �rst term, we have the coordinates of the vector âåêòîðà
OD = {l, 0, 0, 0} in the coordinate system Dx1x2x3x4.
We explain the second term of the right-hand side of Eq. (11) in more detail. We
have in it the coordinates of the vector (−v∞) = {−v∞, 0, 0, 0} in the immovable
space. In order to describe it in the projections on the related coordinate system
Dx1x2x3x4, we need to make a (reverse) rotation of the pendulum at the angle
(−ξ) that is algebraically equivalent to multiplying the value (−v∞) on the vector
iv(−ξ, η1, η2).
Thus, the �rst set of kinematic equations (11) has the following form in our case:

vD cosα = −v∞ cos ξ, vD sinα cos β1 = lω6 + v∞ sin ξ cos η1,

vD sinα sin β1 cos β2 = −lω5 + v∞ sin ξ sin η1 cos η2,

vD sinα sin β1 sin β2 = lω3 + v∞ sin ξ sin η1 sin η2.

(13)

5 Second set of kinematic equations

We also need a set of kinematic equations which relate the angular velocity tensor
Ω̃ and coordinates ξ̇, η̇1, η̇2, ξ, η1, η2 of the phase space (2) of pendulum studied, i.e.,
the tangent bundle T∗S3{ξ̇, η̇1, η̇2; ξ, η1, η2}.
We draw the reasoning style allowing arbitrary dimension. The desired equations
are obtained from the following two sets of relations. Since the motion of the body
takes place in a Euclidean space En, n = 4 formally, at the beginning, we express
the tuple consisting of a phase variables ω3, ω5, ω6, through new variable z1, z2, z3

(from the tuple z). For this, we draw the following turn by the angle η1, η2: ω3

ω5

ω6

 = T1,2(η2) ◦ T2,3(η1)

 z1

z2

z3

 , (14)

T2,3(η1) =

 1 0 0
0 cos η1 − sin η1

0 sin η1 cos η1

 , T1,2(η2) =

 cos η2 − sin η2 0
sin η2 cos η2 0

0 0 1

 .

In other words, the relations z1

z2

z3

 = T2,3(−η1) ◦ T1,2(−η2)

 ω3

ω5

ω6


hold, i.e.,

z1 = ω3 cos η1 + ω5 sin η2,

z2 = −ω3 cos η1 sin η2 + ω5 cos η1 cos η2 + ω6 sin η1,

z3 = ω3 sin η1 sin η2 − ω5 sin η1 cos η2 + ω6 cos η1.

Then we substitute the following relationship instead of the variable z:

z3 = ξ̇, z2 = −η̇1
sin ξ

cos ξ
, z1 = η̇2

sin ξ

cos ξ
sin η1. (15)
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Thus, two sets of Eqs. (14) and (15) give the second set of kinematic equations:

ω3 = ξ̇ sin η1 sin η2 + η̇1
sin ξ

cos ξ
cos η1 sin η2 + η̇2

sin ξ

cos ξ
sin η1 cos η2,

ω5 = −ξ̇ sin η1 cos η2 − η̇1
sin ξ

cos ξ
cos η1 cos η2 + η̇2

sin ξ

cos ξ
sin η1 sin η2,

ω6 = ξ̇ cos η1 − η̇1
sin ξ

cos ξ
sin η1.

(16)

We see that three sets of the relations (10), (13), and (16) form the closed system
of equations.
These three sets of equations include the following functions:

x2N

(
α, β1, β2,

Ω

vD

)
, x3N

(
α, β1, β2,

Ω

vD

)
, x4N

(
α, β1, β2,

Ω

vD

)
, s(α).

In this case, the function s is considered to be dependent only on α, and the functions
x2N , x3N , x4N may depend on, along with the angles α, β1, β2, generally speaking,
the reduced angular velocity tensor lΩ̃/vD.

6 Case where the moment of nonconservative forces

depends on the angular velocity

6.1 Dependence on the angular velocity

This section is devoted to dynamics of the four-dimensional rigid body in the four-
dimensional space. Since this subsection is devoted to the study of the case of
the motion where the moment of forces depends on the angular velocity tensor, we
introduce this dependence in the general case; this will allow us to generalize this
dependence to multi-dimensional bodies.
Let x = (x1N , x2N , x3N , x4N) be the coordinates of the point N of application of a
nonconservative force (interaction with a medium) on the three-dimensional disk D3,
and Q = (Q1, Q2, Q3, Q4) be the components independent of the angular velocity.
We introduce only the linear dependence of the functions (x1N , x2N , x3N , x4N) on
the angular velocity tensor Ω since the introduction of this dependence itself is not
a priori obvious (see [1, 3, 5]).
Thus, we accept the following dependence: x = Q + R, where R = (R1, R2, R3, R4)
is a vector-valued function containing the angular velocity tensor Ω. Here, the
dependence of the function R on the angular velocity is gyroscopic:

R =


R1

R2

R3

R4

 = − 1

vD


0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0




h1

h2

h3

h4

 ,

where (h1, h2, h3, h4) are certain positive parameters (comp. with [2, 4]).
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Now, for our problem, since x1N = xN ≡ 0, we have

x2N = Q2 − h1
ω6

vD
, x3N = Q3 + h1

ω5

vD
, x4N = Q4 − h1

ω3

v
.

Thus, the function rN is selected in the following form (the disk D3 is de�ned by
the equation x1N ≡ 0):

rN =


0
x2N

x3N

x4N

 = R(α)iN −
1

vD
Ω̃h, (17)

iN = iv

(π
2
, β1, β2

)
, h =


h1

h2

h3

h4

 , Ω̃ =


0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0


(see (3), (12)).
Thus, the following relations

x2N = R(α) cos β1 − h1ω6/vD, x3N = R(α) sin β1 cos β2 + h1ω5/vD,

x4N = R(α) sin β1 sin β2 − h1ω3/vD,

hold, which show that an additional dependence of the damping (or accelerating
in some domains of the phase space) moment of the nonconservative forces is also
present in the system considered (i.e., the moment depends on the angular velocity
tensor).
And so, for the construction of the force �eld, we use the pair of dynamical functions
R(α), s(α); the information about them is of a qualitative nature. Similarly to the
choice of the Chaplygin analytical functions (see [1, 2]), we take the dynamical
functions s and R as follows:

R(α) = A sinα, s(α) = B cosα, A,B > 0. (18)

6.2 Reduced systems

Theorem 6.1. The simultaneous equations (6), (13), (16) under conditions (7)�
(9), (17), (18) can be reduced to the dynamical system on the tangent bundle (2) of
the three-dimensional sphere (1).

Indeed, if we introduce the dimensionless parameters and the di�erentiation by the
formulas

b∗ = ln0, n
2
0 =

AB

2I2

, H1∗ =
h1B

2I2n0

, < · >= n0v∞ <′>, (19)
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then the obtained equations have the following form (b∗ > 0, H1∗ > 0):

ξ′′ + (b∗ −H1∗)ξ
′ cos ξ + sin ξ cos ξ − [η′1

2
+ η′2

2
sin2 η1]

sin ξ

cos ξ
= 0,

η′1
′
+ (b∗ −H1∗)η

′
1 cos ξ + ξ′η′1

1 + cos2 ξ

cos ξ sin ξ
− η′2

2
sin η1 cos η1 = 0,

η′2
′
+ (b∗ −H1∗)η

′
2 cos ξ + ξ′η′2

1 + cos2 ξ

cos ξ sin ξ
+ 2η′1η

′
2

cos η1

cos η1

= 0.

(20)

After the transition from the variables z (about the variables z see (15)) to the
intermediate dimensionless variables w

zk = n0v∞(1 + b∗H1∗)Zk, k = 1, 2, z3 = n0v∞(1 + b∗H1∗)Z3 − n0v∞b∗ sin ξ,

system (20) is equivalent to the system

ξ′ = (1 + b∗H1∗)Z3 − b∗ sin ξ, (21)

Z ′3 = − sin ξ cos ξ + (1 + b∗H1∗)(Z
2
1 + Z2

2)
cos ξ

sin ξ
+H1∗Z3 cos ξ, (22)

Z ′2 = −(1 + b∗H1∗)Z2Z3
cos ξ

sin ξ
− (1 + b∗H1∗)Z

2
1

cos ξ

sin ξ

cos η1

sin η1

+H1∗Z2 cos ξ, (23)

Z ′1 = −(1 + b∗H1∗)Z1Z3
cos ξ

sin ξ
+ (1 + b∗H1∗)Z1Z2

cos ξ

sin ξ

cos η1

sin η1

+H1∗Z1 cos ξ, (24)

η′1 = −(1 + b∗H1∗)Z2
cos ξ

sin ξ
, (25)

η′2 = (1 + b∗H1∗)Z1
cos ξ

sin ξ sin η1

, (26)

on the tangent bundle T∗S3{(Z3, Z2, Z1; ξ, η1, η2) ∈ R6 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}
of the three-dimensional sphere S3{(ξ, η1, η2) ∈ R3 : 0 ≤ ξ, η1 ≤ π, η2 mod 2π}.
We see that the independent �fth-order subsystem (21)�(25) (due to cyclicity of the
variable η2) can be substituted into the sixth-order system (21)�(26) and can be
considered separately on its own �ve-dimensional manifold.

6.3 Complete list of the �rst integrals

We turn now to the integration of the desired sixth-order system (21)�(26) (without
any simpli�cations, i.e., in the presence of all coe�cients).
Similarly, for the complete integration of sixth-order system (21)�(26), in general,
we need �ve independent �rst integrals. However, after the change of variables

w3 = −Z3, w2 =
√
Z2

2 + Z2
1 , w1 =

Z2

Z1

, (27)
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the system (21)�(26) splits as follows:

ξ′ = −(1 + b∗H1∗)w3 − b∗ sin ξ,

w′3 = sin ξ cos ξ − (1 + b∗H1∗)w
2
2

cos ξ

sin ξ
+H1∗w3 cos ξ,

w′2 = (1 + b∗H1∗)w2w3
cos ξ

sin ξ
+H1∗w2 cos ξ,

 (28)

w′1 = d1(w3, w2, w1; ξ, η1, η2)
1 + w2

1

w1

cos η1

sin η1

,

η′1 = d1(w3, w2, w1; ξ, η1, η2),

 (29)

η′2 = d2(w3, w2, w1; ξ, η1, η2), (30)

d1(w3, w2, w1; ξ, η1, η2) =

= −(1 + b∗H1∗)Z2(w3, w2, w1)
cos ξ

sin ξ
= ∓ w1w2√

1 + w2
1

cos ξ

sin ξ
,

d2(w3, w2, w1; ξ, η1, η2) =

= (1 + b∗H1∗)Z1(w3, w2, w1)
cos ξ

sin ξ sin η1

= ± w2√
1 + w2

1

cos ξ

sin ξ sin η1

,

in this case Zk = Zk(w3, w2, w1), k = 1, 2, 3, are the functions by virtue of change
(27).
We see that the independent third-order subsystem (28) (which can be considered
separately on its own three-dimensional manifold), the independent second-order
subsystem (29) (after the change of independent variable) can be substituted into
the sixth-order system (28)�(30), and also Eq. (30) on η2 is separated (due to
cyclicity of the variable η2).
Thus, for the complete integration of the system (28)�(30), it su�ces to specify two
independent �rst integrals of system (28), one �rst integral of system (29), and an
additional �rst integral that �attaches� Eq. (30) (i.e., only four ).
First, we compare the third-order system (28) with the nonautonomous second-order
system

dw3

dξ
=

sin ξ cos ξ − (1 + b∗H1∗)w
2
2 cos ξ/sin ξ +H1∗w3 cos ξ

−(1 + b∗H1∗)w3 − b∗ sin ξ
,

dw2

dξ
=

(1 + b∗H1∗)w2w3 cos ξ/sin ξ +H1∗w2 cos ξ

−(1 + b∗H1∗)w3 − b∗ sin ξ
.

(31)

Using the substitution τ = sin ξ, we rewrite system (31) in the algebraic form:

dw3

dτ
=
τ − (1 + b∗H1∗)w

2
2/τ +H1∗w3

−(1 + b∗H1∗)w3 − b∗τ
,

dw2

dτ
=

(1 + b∗H1∗)w2w3/τ +H1∗w2

−(1 + b∗H1∗)w3 − b∗τ
.

(32)
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Further, if we introduce the uniform variables by the formulas w3 = u2τ, w2 = u1τ,
we reduce system (32) to the following form:

τ
du2

dτ
=

(1 + b∗H1∗)(u
2
2 − u2

1) + (b∗ +H1∗)u2 + 1

−(1 + b∗H1∗)u2 − b∗
,

τ
du1

dτ
=

2(1 + b∗H1∗)u1u2 + (b∗ +H1∗)u1

−(1 + b∗H1∗)u2 − b∗
.

(33)

We compare the second-order system (33) with the nonautonomous �rst-order equa-
tion

du2

du1

=
1− (1 + b∗H1∗)(u

2
1 − u2

2) + (b∗ +H1∗)u2

2(1 + b∗H1∗)u1u2 + (b∗ +H1∗)u1

, (34)

which can be easily reduced to the exact di�erential equation

d

(
(1 + b∗H1∗)(u

2
2 + u2

1) + (b∗ +H1∗)u2 + 1

u1

)
= 0.

Therefore, Eq. (34) has the following �rst integral:

(1 + b∗H1∗)(u
2
2 + u2

1) + (b∗ +H1∗)u2 + 1

u1

= C1 = const, (35)

which in the old variables has the form

Θ1(w3, w2; ξ) =

=
(1 + b∗H1∗)(w

2
3 + w2

2) + (b∗ +H1∗)w3 sin ξ + sin2 ξ

w2 sin ξ
= C1 = const. (36)

Then the additional �rst integral has the following structure:

Θ2(w3, w2; ξ) = G

(
sin ξ,

w3

sin ξ
,
w2

sin ξ

)
= C2 = const. (37)

Thus, we have found two �rst integrals (36), (37) of the independent third-order
system (28). For its complete integrability, it su�ces to �nd one �rst integral for
the system (29), and an additional �rst integral that �attaches� Eq. (30).
Indeed, the desired �rst integrals have the following forms:

Θ3(w1; η1) =

√
1 + w2

1

sin η1

= C3 = const, (38)

Θ4(w1; η1, η2) = η2 ± arctg
cos η1√

C2
3 sin2 η1 − 1

= C4 = const, (39)

in this case, in the left-hand side of Eq. (39), we must substitute instead of C3 the
�rst integral (38).

Theorem 6.2. The sixth-order system (28)�(30) possesses the su�cient number
(four) of the independent �rst integrals (36), (37), (38), (39).

Theorem 6.3. Three sets of relations (6), (13), (16) under conditions (7)�(9), (17),
(18) possess four the �rst integrals (the complete set), which are the transcendental
function (in the sense of complex analysis) and are expressed as a �nite combination
of elementary functions.
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6.4 Topological analogies

We can present two groups of analogies, which describes the motion of a free body in
the presence of a tracking force [1, 10, 11]. Thus, we have the following topological
and mechanical analogies in the sense explained above.
(1) A motion of a �xed physical pendulum on a (generalized) spherical hinge in a
�owing medium (nonconservative force �elds under assumption of additional depen-
dence of the moment of the forces on the angular velocity).
(2) A spatial free motion of a four-dimensional rigid body in a nonconservative
force �eld under a tracing force (in the presence of a nonintegrable constraint under
assumption of additional dependence of the moment of the forces on the angular
velocity).
(3) A composite motion of a four-dimensional rigid body rotating about its center
of mass, which moves rectilinearly and uniformly, in a nonconservative force �eld
under assumption of additional dependence of the moment of the forces on the
angular velocity.
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