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Abstract: I showed the integrability of the equations of the plane-parallel mo-
tion of a pendulum in a resisting medium, when the first integral, which is
the transcendental function of quasi-velocities, was explicitly found for the set
of the dynamic equations. In this case, the total interaction of the medium
with a rigid body is concentrated on that part of the surface that which has
the shape of a one-dimensional plate. Then the problem was generalized to
the spatial case, the complete set of transcendental first integrals being found
explicitly for the set of dynamic equations. Here already the total interaction
of the medium with a rigid body is concentrated on that portion of its surface
that has the shape of a flat disk.

1. Model assumptions

Let consider the homogeneous flat plate AB symmetrical relative to the plane which per-

pendicular to the plane of figure and passing through the holder OD. The plate is rigidly

fixed perpendicular to the tool holder OD located on the cylindrical hinge O, and it flows

about homogeneous fluid flow (Fig. 1). In this case, the body is a physical pendulum, in

which the plate AB and the pivot axis perpendicular to the plane of motion. The medium

flow moves from infinity with constant velocity v = v∞ 6= 0. Assume that the holder does

not create a resistance [1, 2].

I suppose that the total force S of medium flow interaction is parallel to the holder, and

point N of application of this force is determined by at least the angle of attack α, which is

made by the velocity vector vD of the point D with respect to the flow and the holder (Fig.

1, wherein the figure shows the angle of attack equal to π−α), and also the reduced angular

velocity ω ∼= lΩ/vD, vD = |vD| (l is the length of the holder, Ω is the algebraic value of a

projection of the pendulum angular velocity to the axle hinge). Such conditions arise when

one uses the model of streamline flow around plane bodies [5].

The vector e = OD/l determines the orientation of the holder. Then S = −s(α)v2
De,

where s(α) = s1(α)sign cos α, and the resistance coefficient s1 ≥ 0 depends only on the angle

of attack α. By the plate symmetry properties with respect to the point D, the function

s(α) is even. Let Dx1x2 = Dxy be the coordinate system rigidly attached to the body,
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Figure 1. Fixed a pendulum on a cylindrical hinge in the stream running medium

herewith, the axis Dx = Dx1 has a direction vector e, and the axis Dx2 = Dy has the

same direction with the vector DA (Fig. 1). In the same figure it is shown the angle θ = ξ,

i.e., the pendulum angle. The space of positions of this physical pendulum is the circle

(one-dimensional sphere)

S1{ξ ∈ R1 : ξ mod 2π}, (1)

and its phase space is the tangent bundle of a circle

T∗S
1{(ξ̇; ξ) ∈ R2 : ξ mod 2π}, (2)

i.e., two-dimensional cylinder.

To the value Ω, I put in correspondence the skew-symmetric matrix

Ω̃ =


 0 −Ω

Ω 0


 , Ω̃ ∈ so(2).

The distance from the center D of the plate to the center of pressure (the point N , Fig.

1) has the form |rN | = rN = DN (α, lΩ/vD) , where rN = {0, x2N} = {0, yN} in system

Dx1x2 = Dxy.

2. Set of dynamical equations in Lie algebra so(2)

If I is a central moment of inertia of a rigid body–pendulum then the general equation of

motion has the following form:

IΩ̇ = DN

(
α,

lΩ

vD

)
s(α)v2

D, (3)
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where {−s(α)v2
D, 0} is the decomposition of the medium interaction force S in the coordinate

system Dx1x2.

Since the dimension of the Lie algebra so(2) is equal to 1, the single equation (3) is a

group equations on so(2), and, simply speaking, the motion equation.

I can see, that in the right-hand side of Eq. (3), first of all, it includes the angle of attack,

therefore, this equation is not closed. In order to obtain a complete system of equations of

motion of the pendulum, it is necessary to attach several sets of kinematic equations to the

dynamic equation on the Lie algebra so(2).

3. First set of kinematic equations

In order to obtain a complete system of equations of motion, it needs the set of kinematic

equations which relate the velocities of the point D (i.e., the formal center of the plate AB)

and the over-running medium flow:

vD = vD · iv(α) = Ω̃


 l

0


 + (−v∞)iv(−ξ), (4)

iv(α) =


 cos α

sin α


 . (5)

The equation (4) expresses the theorem of addition of velocities in projections on the

related coordinate system Dx1x2.

Indeed, the left-hand side of Eq. (4) is the velocity of the point D of the pendulum with

respect to the flow in the projections on the related with the pendulum coordinate system

Dx1x2. Herewith, the vector iv(α) is the unit vector along the axis of the vector vD. The

vector iv(α) is the image of the unit vector along the axis Dx1, rotated around the vertical

(the axis Dx3) by the angle α and has the decomposition (5).

The right-hand side of the Eq. (4) is the sum of the velocities of the point D when you

rotate the pendulum (the first term), and the motion of the flow (the second term). In this

case, in the first term, I have the coordinates of the vector OD = {l, 0} in the coordinate

system Dx1x2.

I explain the second term of the right-hand side of Eq. (4) in more detail. I have in it the

coordinates of the vector (−v∞) = {−v∞, 0} in the immovable space. In order to describe

it in the projections on the related coordinate system Dx1x2, I need to make a (reverse)

rotation of the pendulum at the angle (−ξ) that is algebraically equivalent to multiplying

the value (−v∞) on the vector iv(−ξ).
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Thus, the first set of kinematic equations (4) has the following form in our case:

vD cos α = −v∞ cos ξ,

vD sin α = lΩ + v∞ sin ξ.
(6)

4. Second set of kinematic equations

I also need a set of kinematic equations which relate the angular velocity tensor Ω̃ and coor-

dinates ξ̇, ξ of the phase space (2) of pendulum studied, i.e., the tangent bundle T∗S1{ξ̇; ξ}.
I draw the reasoning style allowing arbitrary dimension. The desired equations are

obtained from the following two sets of relations. Since the motion of the body takes place

in a Euclidean space En, n = 2 formally, at the beginning, I express the tuple consisting of

a phase variable Ω, through new variable z1 (from the tuple z):

Ω = z1. (7)

Then I substitute the following relationship instead of the variable z:

z1 = ξ̇. (8)

Thus, two sets of Eqs. (7) and (8) give the second set of kinematic equations:

Ω = ξ̇. (9)

I see that three sets of the relations (3), (6), and (9) form the closed system of equations.

These three sets of equations include the following two functions: rN = DN (α, lΩ/vD),

s(α). In this case, the function s is considered to be dependent only on α, and the function

rN = DN may depend on, along with the angle α, generally speaking, the reduced angular

velocity ω ∼= lΩ/vD.

5. Problem on free body motion under assumption of tracing force

Parallel to the present problem of the motion of the fixed body, we study the plane-parallel

motion of the free symmetric rigid body with the frontal plane butt-end (one-dimensional

plate AB) in the resistance force fields under the quasi-stationarity conditions with the same

model of medium interaction (Fig. 2).

If (v, α) are the polar coordinates of the velocity vector of the certain characteristic point

D of the rigid body (D is the center of the plate AB), Ω is the value of its angular velocity,

I, m are characteristics of inertia and mass, then the dynamical part of the equations of

motion in which the tangent forces of the interaction of the body with the medium are
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Figure 2. Plane-parallel motion of the free symmetric rigid body in a resisting medium

absent, has the form

v̇ cos α− α̇v sin α− Ωv sin α + σΩ2 = Fx
m

,

v̇ sin α + α̇v cos α + Ωv cos α− σΩ̇ = 0,

IΩ̇ = yN

(
α, Ω

v

)
s(α)v2,

(10)

where Fx = −S, S = s(α)v2, σ = CD, in this case (0, yN (α, Ω/v)) are the coordinates of

the point N of application of the force S in the coordinate system Dx1x2 = Dxy related to

the body (Fig. 2).

The first two equations of the system (10) describe the motion of the center of a mass in

the two-dimensional Euclidean plane E2 in the projections on the coordinate system Dx1x2.

In this case, Dx1 = Dx is the perpendicular to the plate passing through the center of mass

C of the symmetric body and Dx2 = Dy is an axis along the plate. The third equation

of the system (10) is obtained from the theorem on the change of the angular moment of a

rigid body in the projection on the axis perpendicular to the figure.

Thus, the direct product R1 × S1 × so(2) of the two-dimensional cylinder and the Lie

algebra so(2) is the phase space of third-order system (10) of the dynamical equations.

Herewith, since the medium influence force dos not depend on the position of the body in a

plane, the system (10) of the dynamical equations is separated from the system of kinematic

equations and may be studied independently (see also [3, 4]).

5.1. Nonintegrable constraint

If I consider a more general problem on the motion of a body under the action of a certain

tracing force T passing through the center of mass and providing the fulfillment of the

equality

v ≡ const, (11)
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during the motion, then Fx in system (10) must be replaced by T − s(α)v2.

As a result of an appropriate choice of the magnitude T of the tracing force, I can achieve

the fulfillment of Eq. (11) during the motion. Indeed, if I formally express the value T by

virtue of system (10), I obtain (for cos α 6= 0):

T = Tv(α, Ω) = mσΩ2 + s(α)v2

[
1− mσ

I
yN

(
α,

Ω

v

)
sin α

cos α

]
.

This procedure can be viewed from two standpoints. First, a transformation of the

system has occurred at the presence of the tracing (control) force in the system which

provides the corresponding class of motions (11). Second, I can consider this procedure as a

procedure that allows one to reduce the order of the system. Indeed, system (10) generates

an independent second-order system of the following form:

α̇v cos α + Ωv cos α− σΩ̇ = 0,

IΩ̇ = yN

(
α,

Ω

v

)
s(α)v2,

(12)

where the parameter v is supplemented by the constant parameters specified above.

I can see from (12) that the system cannot be solved uniquely with respect to α̇ on the

manifold

O =
{

(α, Ω) ∈ R2 : α =
π

2
+ πk, k ∈ Z

}
(13)

Thus, formally speaking, the uniqueness theorem is violated on manifold (13).

This implies that system (12) outside of the manifold (13) (and only outside it) is

equivalent to the following system:

α̇ = −Ω +
σv

I

yN

(
α, Ω

v

)
s(α)

cos α
,

Ω̇ =
1

I
yN

(
α,

Ω

v

)
s(α)v2.

(14)

The uniqueness theorem is violated for system (12) on the manifold (13) in the following

sense: regular phase trajectories of system (12) pass through almost all points of the manifold

(13) and intersect the manifold (13) at a right angle, and also there exists a phase trajectory

that completely coincides with the specified point at all time instants. However, these

trajectories are different since they correspond to different values of the tracing force.

5.2. Constant velocity of the center of mass

If I consider a more general problem on the motion of a body under the action of a certain

tracing force T passing through the center of mass and providing the fulfillment of the
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equality

VC ≡ const (15)

(VC is the velocity of the center of mass), then Fx in system (10) must be replaced by zero

since the nonconservative couple of the forces acts on the body: T − s(α)v2 ≡ 0.

Obviously, I must choose the value of the tracing force T as follows:

T = Tv(α, Ω) = s(α)v2, T ≡ −S. (16)

The choice (16) of the magnitude of the tracing force T is a particular case of the possi-

bility of separation of an independent second-order subsystem after a certain transformation

of the third-order system (10). Indeed, let the following condition hold for T :

T = Tv(α, Ω) = τ1

(
α,

Ω

v

)
v2 + τ2

(
α,

Ω

v

)
Ωv + τ3

(
α,

Ω

v

)
Ω2 = T1

(
α,

Ω

v

)
v2.

I can rewrite system (10) as follows:

v̇ + σΩ2 cos α− σ sin α

[
v2

I
yN

(
α,

Ω

v

)
s(α)

]
=

T1

(
α, Ω

v

)
v2 − s(α)v2

m
cos α,

α̇v + Ωv − σ cos α

[
v2

I
yN

(
α,

Ω

v

)
s(α)

]
− σΩ2 sin α =

s(α)v2 − T1

(
α, Ω

v

)
v2

m
sin α, (17)

Ω̇ =
v2

I
yN

(
α,

Ω

v

)
s(α).

If I introduce the new dimensionless phase variable and the differentiation by the for-

mulas Ω = n1vω, < · >= n1v <′>, n1 > 0, n1 = const, then system (17) is reduced to the

following form:

v′ = vΨ(α, ω), (18)

α′ = −ω + σn1ω
2 sin α +

[
σ

In1
yN (α, n1ω) s(α)

]
cos α−

− T1 (α, n1ω)− s(α)

mn1
sin α,

ω′ =
1

In2
1

yN (α, n1ω) s(α)− ω

[
σ

In1
yN (α, n1ω) s(α)

]
sin α+

+ σn1ω
3 cos α− ω

T1 (α, n1ω)− s(α)

mn1
cos α,

(19)

Ψ(α, ω) = −σn1ω
2 cos α +

[
σ

In1
yN (α, n1ω) s(α)

]
sin α+
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+
T1 (α, n1ω)− s(α)

mn1
cos α.

I see that the independent second-order subsystem (19) can be substituted into the

third-order system (18), (19) and can be considered separately on its own two-dimensional

phase cylinder.

I take the function rN as follows (the plate AB is given by the equation x1N ≡ 0):

rN =


 0

x2N


 = R(α)iN , (20)

where iN = iv (π/2) (see (5)). In our case

iN =


 0

1


 .

Thus, the equality x2N = R(α) holds and shows that for the considered system, the

moment of the nonconservative forces is independent of the angular velocity (it depends

only on the angle α). For the construction of the force field, I use the pair of dynamical

functions R(α), s(α); the information about them is of a qualitative nature. Similarly to the

choice of the Chaplygin analytical functions (see [5]), I take the dynamical functions s and

R as follows:

R(α) = A sin α, s(α) = B cos α, A, B > 0. (21)

5.3. Reduced systems

Theorem 1. The simultaneous equations (3), (6), (9) under conditions (20), (21) can be

reduced to the dynamical system on the tangent bundle (2) of the one-dimensional sphere

(1).

Indeed, if I introduce the dimensionless parameter and the differentiation by the formulas

b∗ = ln0, n2
0 =

AB

I
, < · >= n0v∞ <′>, (22)

then the obtained equation has the following form:

ξ′′ + b∗ξ
′ cos ξ + sin ξ cos ξ = 0. (23)

After the transition from the variables z (about the variables z see (8)) to the variables

w w1 = −1/n0v∞z1 − b∗ sin ξ, Eq. (23) is equivalent to the system

ξ′ = −w1 − b∗ sin ξ,

w′1 = sin ξ cos ξ,
(24)
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on the tangent bundle T∗S1{(w1; ξ) ∈ R2 : ξ mod 2π} of the one-dimensional sphere

S1{ξ ∈ R1 : ξ mod 2π}.
The phase pattern of the system (24) (α ↔ ξ − π, ω ↔ w1) is shown in the Fig. 3.

Figure 3. Variable dissipation dynamical system

5.4. Transcendental first integral

I turn now to the integration of the desired second-order system (24). In the variables (ξ, w1)

the found first integrals have the following forms:

I. b2
∗ − 4 < 0.

[sin2 ξ + b∗w1 sin ξ + w2
1]× exp

{
2b∗√
4− b2∗

arctg
2w1 + b∗ sin ξ√

4− b2∗ sin ξ

}
= const. (25)

II. b2
∗ − 4 > 0.

[sin2 ξ + b∗w1 sin ξ + w2
1]×

∣∣∣∣∣
2w1 + b∗ sin ξ +

√
b2∗ − 4 sin ξ

2w1 + b∗ sin ξ −
√

b2∗ − 4 sin ξ

∣∣∣∣∣

−b∗/
√

b2∗−4

= const. (26)

III. b2
∗ − 4 = 0.

(w1 − sin ξ) exp

{
sin ξ

w1 − sin ξ

}
= const. (27)

Therefore, in the considered case the system of dynamical equations (24) has the first

integral expressed by relations (25)–(27), which is a transcendental function of its phase

variables (in the sense of complex analysis) and is expressed as a finite combination of

elementary functions.

Theorem 2. Three sets of relations (3), (6), (9) under conditions (20), (21) possess the

first integral (the complete set), which is a transcendental function (in the sense of complex

analysis) and is expressed as a finite combination of elementary functions.
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5.5. Topological analogies

Now I present two groups of analogies related to the system (10), which describes the motion

of a free body in the presence of a tracking force.

The first group of analogies deals with the case of the presence the nonintegrable con-

straint (11) in the system. In this case the dynamical part of the motion equations under

certain conditions is reduced to a system (14).

Under onditions (20), (21) the system (14) has the form

α′ = −ω + b sin α,

ω′ = sin α cos α,
(28)

if I introduce the dimensionless parameter, the variable, and the differentiation analogously

to (22):

b = σn0, n2
0 =

AB

I
, Ω = n0vω, < · >= n0v <′> . (29)

Theorem 3. System (28) (for the case of a free body) is equivalent to the system (24)

(for the case of a fixed pendulum).

Indeed, it is sufficient to substitute

ξ = α, w1 = ω, b∗ = −b. (30)

Corollary 1.

1. The phase pattern of the system (28) is shown in the Fig. 3.

2. The angle of attack α for a free body (Fig. 2) is equivalent to the angle of body

deviation ξ of a fixed pendulum (Fig. 1).

3. The distance σ = CD for a free body corresponds to the length of a holder l = OD

of a fixed pendulum.

4. The first integral of a system (28) can be automatically obtained through the Eqs.

(25)–(27) after substitutions (30):

I. b2 − 4 < 0.

[sin2 α− bω sin α + ω2]× exp

{
− 2b√

4− b2
arctg

2ω − b sin α√
4− b2 sin α

}
= const. (31)

II. b2 − 4 > 0.

[sin2 α− bω sin α + ω2]×
∣∣∣∣
2ω − b sin α +

√
b2 − 4 sin α

2ω − b sin α−√b2 − 4 sin α

∣∣∣∣
b/
√

b2−4

= const. (32)
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III. b2 − 4 = 0.

(ω − sin α) exp

{
sin α

ω − sin α

}
= const. (33)

The second group of analogies deals with the case of a motion with the constant velocity

of the center of mass of a body, i.e., when the property (15) holds. In this case the dynamical

part of the motion equations under certain conditions is reduced to a system (19).

Then, under conditions (15), (20), (21), and (29), the reduced dynamical part of the

motion equations (system (19)) has the form of analytical system

α′ = −ω + b sin α cos2 α + bω2 sin α,

ω′ = sin α cos α− bω sin2 α cos α + bω3 cos α,
(34)

in this case, I choose the constant n1 as follows: n1 = n0.

If the problem on the first integral of the system (28) is solved using Corollary 1, the

same problem for the system (34) can be solved by the following theorem 4.

Theorem 4. The first integral of the system (34) is a transcendental function of its

own phase variables and is expressed as a finite combination of elementary functions.

Because of cumbersome character of form of the first integral obtained, I represent this

form in the case b = 2 only:

exp

{
sin α + ω

sin α− ω

}
1− 4ω sin α + 4ω2

(ω − sin α)2
= C1 = const. (35)

Theorem 5. The first integral of system (28) is constant on the phase trajectories of

the system (34).

Thus, I have the following topological and mechanical analogies in the sense explained

above.

(1) A motion of a fixed physical pendulum on a cylindrical hinge in a flowing medium

(nonconservative force fields).

(2) A plane-parallel free motion of a rigid body in a nonconservative force field under a

tracing force (in the presence of a nonintegrable constraint).

(3) A plane-parallel composite motion of a rigid body rotating about its center of mass,

which moves rectilinearly and uniformly, in a nonconservative force field.

6. Cases of integrability corresponding to the motion of a pendulum in the

three-dimensional space

In [4,6,7], the planar problem was generalized to the spatial (three-dimensional) case, where

the system of dynamical equations has a complete set of transcendental first integrals. It
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was assumed that the interaction of the homogeneous medium flow with the fixed body (the

spherical pendulum) is concentrated on a part of the body surface that has the form of a

planar (two-dimensional) disk.
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