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Preface 
This year the 12th International Conference on E-Activities (E-ACTIVITIES '15) and the 4th 
International Conference on Applied and Computational Mathematics (ICACM '15) were held in 
Seoul, South Korea, September 5-7, 2015. The conferences provided a platform to discuss e-
learning, e-management, e-marketing, numerical analysis and applications, probabilities, 
statistics, operational research, algorithms, discrete mathematics, systems, communications, 
control etc. with participants from all over the world, both from academia and from industry. 

Their success is reflected in the papers received, with participants coming from several countries, 
allowing a real multinational multicultural exchange of experiences and ideas. 

The accepted papers of these conferences are published in this Book that will be sent to 
international indexes. They will be also available in the E-Library of the WSEAS. Extended 
versions of the best papers will be promoted to many Journals for further evaluation. 

Conferences such as these can only succeed as a team effort, so the Editors want to thank the 
International Scientific Committee and the Reviewers for their excellent work in reviewing the 
papers as well as their invaluable input and advice. 

The Editors
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Dynamical Systems With Variable Dissipation:
Methods and Applications

MAXIM V. SHAMOLIN
Lomonosov Moscow State University

Institute of Mechanics
Micurinskii pr., 1, 119192 Moscow

RUSSIAN FEDERATION
shamolin@rambler.ru

Abstract:This paper contains some the development of qualitative methods in the theory of nonconservative sys-
tems that arise, e.g., in such fields of science as the dynamics of a rigid body interacting with a resisting medium,
oscillation theory, etc. This material can call the interest of specialists in the qualitative theory of ordinary differ-
ential equations, in rigid body dynamics, as well as in fluid and gas dynamics since the work uses the properties of
motion of a rigid body in a medium under the streamline flow around conditions.

Key–Words:Dynamical Systems With Variable Dissipation, Dynamics of a Rigid Body

1 Introduction

The author obtains a full spectrum of complete in-
tegrability cases for nonconservative dynamical sys-
tems having nontrivial symmetries. Moreover, in al-
most all cases of integrability, each of the first inte-
grals is expressed through a finite linear combination
of elementary functions and is a transcendental func-
tion of its variables, simultaneously. In this case, the
transcendence is meant in the complex analysis case,
i.e., after the continuation of the functions considered
to the complex domain, they have essentially singular
points. The latter fact is stipulated by the existence of
attracting and repelling limit sets in the system con-
sidered (for example, attracting and repelling foci).

It was obtains new families of phase portraits
of systems with variable dissipation on lower- and
higher-dimensional manifolds. He discusses the prob-
lems of their absolute or relative roughness and dis-
cover new integrable cases of the rigid body motion,
including those in the classical problem of motion
of a spherical pendulum placed in the accumulating
medium flow too.

2 A Certain Problem of the Dynam-
ics of a Rigid Body Interacting
With a Medium

2.1 Sequence of steps in modelling
Generally speaking, the general problem of studying
the body motion in the resistance force field ”is pre-

vented” by the absence of any complete description of
this force field. As is known, in principle, we can mea-
sure the positional component of the resistance force
in a stationary experiment. But the component of the
force field, which corresponds to the quasi-velocities
of the system considered arises only under the non-
stationary body motion.

Therefore, the process of describing the force
field is a sequence of steps. We first study a prepara-
tory model of the force field and construct a family of
mechanical systems whose motion has different char-
acteristics that essentially depend on model parame-
ters such that the information about them is incom-
plete or does not exist at all. As a result of studying
such a model, there arise questions such that the an-
swers to them cannot be found in the framework of
the accepted model. Then the elaborated objects be-
come the subject of a detailed experimental study at
the second step. Such an experiment presupposes the
answers to the formulated questions and either intro-
duces necessary corrections to the preparatory con-
structed model or reveals new questions, which lead
to the necessity of the first step repetition but in a new
level of the problem understanding.

Such an approach is related to the description
of stationary motion regimes, their branching, bi-
furcation, stability and instability analysis, revealing
surgery conditions, and appearance of regular or ir-
regular (i.e.,chaotic) oscillations.

Sometime, we can succeed in obtaining the an-
swers to questions of qualitative character when dis-
cussing the traditional problem of analytic mechanics,
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the problem of existence of the full tuple of first inte-
grals for the constructed dynamical system. At the
same time, the study of the behavior of a dynamical
system ”as a whole” often forces us to use the numer-
ical experiment. In this case, there arises the necessity
of elaborating new computational algorithms or im-
proving the known, as well as new qualitative meth-
ods.

In this work, we study the problem on the body
motion under the condition that the line of the force
applied to the body does not change its orientation
with respect to the body and can only displace parallel
to itself depending on the angle of attack and, possi-
bly, on other phase variables. Such conditions arise
under the plate motion with the so-called ”large” an-
gles of attack in a medium under a streamline flow (in
this case, the fluid is assumed to be ideal in general,
although all this are also true for fluids of a small vis-
cosity, first of all, for the water) or under a separation
flow (which is justified by an experiment completely
satisfactory). Therefore, themain objects of studying
is a family of bodies such that a part of the surface
of each of which has a plane part that is flowed by a
medium according to the streamline flow laws.

2.2 Physical assumptions
Assume that a rigid body of massm executes a plane-
parallel motion in a medium with quadratic resistance
law and that a certain part of the exterior body sur-
face is a plane plate being under the medium stream-
line flow conditions. This means that the action of the
medium on the plate reduces to the forceS (applied at
the pointN ) whose line of action is orthogonal to the
plate. Let the remained par of the body surface be situ-
ated in a volume bounded by the flow surface that goes
away from the plate boundary and is not subjected by
the medium action. For example, similar conditions
can arise after the body entrance into the water.

2.2.1 Quasi-stationarity hypothesis and phase
variables

Let us relate to the body the right coordinate system
Dxyz whose axisz moves parallel to itself, and for
simplicity, assume that the planeDzx is the geometric
symmetry plane of the body. This ensures the fulfill-
ment of property 2) under the motion satisfying con-
dition 1).

To construct the dynamical model, let us intro-
duce the following phase coordinates: the valuev =
|v| of the velocityv of the pointD, the angleα be-
tween the vectorv and the axisx, and the algebraic
valueΩ of the projection of the body absolute angular
velocity on the axisz.

Assume that the value of the forceS quadrat-
ically depend onv with nonnegative coefficients1

(S = s1v
2). As usual, one representss1 in the form

s1 = ρPcx/2, wherecx is now the dimension-free
coefficient of the frontal resistance (ρ is the medium
density andP is the plate area). This coefficient de-
pends on the angle of attack, theStruchal number,
and other quantities which are usually considered as
parameters. In what follows, we also introduce the
following additional phase variable of the ”Struchal
type”: ω = ΩD/v, whereD is the characteristic plate
transversal size. We restrict ourselves to the depen-
dence ofcx on the pair(α, ω) of variables, i.e., we
assume thats1 (as well asyN ) is a function of the pair
(α, ω) of dimension-free variables.

Let us define (purely formally for now) the de-
pendence ofs1 and the ordinateyN of the pointN
on the phase coordinates(α, ω). The system of dy-
namical equations must admit a particular solution
of the form α(t) ≡ 0, ω(t) ≡ 0. Therefore, we
have the conditionyN (0, 0) = 0 for the function
yN (α, ω), and in the linear case, we need to assume
that yN = D(kα − hω), wherek andh are certain
constants. Because the approximation is linear, we
can ignore the dependence ofs1 onα andω.

In what follows, to take into account the ac-
tion direction of the forceS, we introduce the fol-
lowing sigh-alternating auxiliary functions(α, ω) =
s1(α, ω)sign cosα.

2.2.2 Key parameters

Therefore, the linearized model of the force medium
action contains three parameterss, k, andh, which
are determined by the plate form in the plan. As was
already mentioned, the first of these parameters, the
coefficients, is dimensional. The parametersk and
h aredimension-freebecause of the method of their
introduction.

Note that the quantitiess and k can be found
experimentally by using weight measurements in de-
vices of the hydro- or aerodynamic tubes type. In [4],
there also is the information about the theoretical find-
ing of these quantities for separate plate forms. This
information allows us to assume thatk > 0. As for
the parameterh, even the very necessity of its intro-
duction to the model is not a priori obvious.

2.3 Linearized equations of motion
The equations of motion of the center of masses in
projections on the axesDx andDy of the related co-
ordinate system and the equation of the kinetic mo-
ment variation with respect to the König axis have the
following form with accuracy up to terms linear inα
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andΩ (here,σ is the distanceDC andI is the central
moment of inertia of the body):

v̇ = −sv2/m (1)

vα̇− sv2α/m + vΩ− σΩ̇ = 0 (2)

IΩ̇ = sDv2(kα− hDΩ/v) (3)

Assuming thatv 6= 0, introducing the natural param-
eterσ1 (v dt = D dσ1), which is usual for such sys-
tems, and using the changeω = DΩ/v (see above) of
the variableΩ and the obvious differentiation formula
D ˙( ) = vd/dσ1( ) = v( )′ we arrive at the system

v′ = −sv

m
D

Iω′ = ω(I −mD2h)
Ds

m
+ sD3kα (4)

α′ = −ω

(
1 +

sσD2

I
h

)
+ sD

(
1
m

+
kσD

I

)
α (5)

in which two latter equations are are separated from
the first thus forming the independent second-order
system 4, 5 and can be studied separately.

Let us transform these equations as follows: ex-
cludeα from them introducing the angle of turnφ by
the formulaφ′ = ω; we obtain their linear integral in
the formα−ω(I/(kmD2)+σ/D)+φ(1+σs/m+
Is/(km2D) − hsD/km) = b = const. With ac-
count for this, the equation for the angle of turnφ be-
comesIφ′′+φ′sD(D2h−Dσk−2I/m)+φsD3(k+
kσs/m+Is/m2D−hsD/m) = ksD3b. It is easy to
see that it has the form of the linear pendulum equa-
tion; under certain conditions, this pendulum executes
oscillations near a certain positionφ∗ determined by
the valueb of the linear integral.

For h = 0, the coefficient of the so-called lin-
ear damping is negative, whereas the coefficients of
the positional component positive; this allows us to
speak about the oscillatory instability of the solution
φ = φ∗. On the contrary, for a sufficiently largeh,
the solutionφ = φ∗ can be made to be stable, and,
moreover, it can loose its oscillatory character, since
the coefficient of the positional component becomes
negative.

But the main circumstance is that because this lin-
ear pendulum is multiparameter, the oscillatory stabil-
ity of the solutionφ = φ∗ is possible for certain finite
values ofh, since both mentioned coefficient can be
positive in principle.

2.4 Experiment
To describe the results and concrete properties of
the body motion, in Institute of Mechanics of M. V.

Lomonosov Moscow State University, V. A. Eroshin
and V. M. Makarshin carried out experiments in regis-
tration of the motion of homogeneous circular cylin-
ders in the water. Owing to the experiment, it becomes
possible to find the dimension-free parametersk and
h of the medium action on a rigid body.

The experiment allows one to make several im-
portant conclusions.

The first of them is as follows: therectilinear sta-
tionary free body drag(in the water) is unstableat
least with respect to the angle of attack and the angu-
lar velocity.

The second conclusion obtained from the carried
out natural experiment is as follows:in modelling the
medium action on the body, it is necessary to take into
account the additional parameter characterizing the
rotational derivative of the moment with respect to
the body angular velocity. This parameter introduces
the dissipation into the system. In our linear approxi-
mation, the accounting damping moment linearly de-
pends on the body velocity.

For certain cases, the value of the damping mo-
ment coefficient under the body motion in the water
was already estimated. This estimate confirms the in-
stability of the body rectilinear motion in the water.
Purely formally, increasing the value of the damping
coefficient, we can attain the stability of a motion, but
it is difficult to ensure this stability in realty. The rigid
bode rectilinear motion is stable in certain media (for
example in the clay), as the experiment shows. Possi-
bly, this stability is attained due account for the exis-
tence of a considerable damping from the medium in
the system or for the existence of forces tangent to the
plate.

If the additional medium damping action on the
body is of a purely dissipative character, then we can
restrict ourselves to the region of positive damping
moment parameter values, since a priori, its sign is
not obvious. The value of this parameter is propor-
tional to the transversal plate size, and to create the
stability conditions of the motion considered, we also
need to take into account the length of the moving
body. Therefore, for sufficiently long bodies moving
in the water, the contribution of the additional dissi-
pation into the body orientation angle variation man-
ifests itself only a certain inessential decrease of the
exponent of the exponential related to the instability
of the motion.

2.5 Beginning of nonlinear analysis
The first conclusion made from the experiment forces
us to consider the class of possible body motions
for small angles of attack as a supporting class for
studying the class of free body drags with finite an-
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gle of attack. For different bodies, under motion in
a medium and under certain conditions, the angles of
attack can practically assume any value from the in-
terval (0, π/2), and only for the angles close toπ/2,
the so-called washing out of the lateral surface is in-
evitable. Therefore, there arises the necessity of ex-
tending the functionsyN ands to finite angles of at-
tack, i.e., the expansion of the domain of the pair of
dynamical functions up to the interval(0, π/2). But,
in fact, it is necessary to extend the dynamical func-
tions to the whole numerical line; this is clear from
the following arguments.

2.5.1 Nonlinear equations

In order to pass to a more complete description of the
free body motion, let us represent the dynamics equa-
tionsmwc = F, IΩ̇ = M obtained early in the linear
form (see 1-3) as follows:

v̇ cosα− ȧv sinα− Ωv sinα + σΩ2 = Fx/m (6)

v̇ sinα + ȧv cosα + Ωv cosα− σΩ̇ = 0 (7)

IΩ̇ = yN (α, ω)Fx, ω = DΩ/v (8)

As a rule, for various variants of the body mo-
tion considered below, the generalized forceFx is
quadratic in velocities(v, Ω) and explicitly depends
on the auxiliary sign-alternating functions(α, ω) (for
example,Fx(α, v,Ω) = −s(α, ω)v2 in the case of the
body free drag). Therefore, the class of conceptual
bodies and their conceptual motions defines a certain
pair of dynamical functions(s(α, ω), yN (α, ω)) be-
longing to definite function classes.

2.5.2 Classes of dynamical functions

The fist stage of the complete nonlinear study of the
body motion in a medium under the quasi-stationarity
conditions is the study of the corresponding dynam-
ical systems in which the damping is not taken into
account (in particular,h = 0 in the linear case). The
account for the damping is the next labor-consuming
stage of studying the problem, which is presented in
this work in a sufficient detail.

To begin with, we consider the case where the pair
of dynamical functions(yN , s) depends only on the
angle of attack. In this case, to qualitatively describe
this pair of functions, we use the experimental infor-
mation about the streamline flow properties.

The classes of dynamical functions to be intro-
duced are sufficiently wide. They consists of smooth,
2π-periodic (yN (α) is odd ands(α) is even) func-
tions satisfying the following conditions:yN (α) > 0
for α ∈ (0, π), and, moreover,y′N (0) > 0 and
y′N (π) < 0 (the function class{yN} = Y ); s(α) > 0

for α ∈ (0, π/2), s(α) < 0 for α ∈ (π/2, π), and,
moreover,s(0) > 0 ands′(π/2) < 0 (the function
class{s} = Σ). Both yN and s change the sign
under the replacement ofα on α + π. Therefore,
yN ∈ Y, s ∈ Σ In particular, the analytic functions

yN (α) = y0(α) = A sinα ∈ Y (9)

s(α) = s0(α) = B cosα ∈ Σ, A, B > 0 (10)

serve as typical representatives of the described
classes and correspond to the medium interaction
functions obtained by S. A. Chaplygin in studying the
plane-parallel flow around of a plane infinite length by
a homogeneous medium flow.

In what follows, there rises the productF (α) =
yN (α)s(α) in the dynamical systems considered. It
follows from the conditions listed above thatF is a
sufficiently smooth oddπ-periodic functions satisfy-
ing the following conditions:F (α) > 0 for α ∈
(0, π/2), F ′(0) > 0, andF ′(π/2) < 0 (the function
class{F} = Φ). Therefore,F ∈ Φ In particular, the
analytic function

F = F0(α) = AB sinα cosα ∈ Φ (11)

is also a typical representative of the a function classΦ
arisen (and also corresponds to the S. A. Chaplygin
case mentioned above).

Let us explain the necessity of a wide choice of
the function classesY andΣ. A plane plate is a ge-
ometric section of the part of the body surface that
interacts with the medium and is plane. The geo-
metric form of such a plane domain can be arbitrary.
Moreover, the chord lying in the plane of the domain
can differently determine the plane of the body mo-
tion itself (in the case of the plane-parallel motion).
The latter circumstances allow us to refer the dynam-
ical functions arisen to definite classes. As was noted
above, sufficiently weak conditions are imposed on
these function classes, and, therefore, these classes are
sufficiently wide. In advance, they include admissible
concrete functions take for each conceptual body and
each conceptual motion.

Therefore, to study the medium flow around a
plate, we use theclasses of dynamical systemsdefined
by a pair of dynamical functions, which considerably
complicates the global analysis performance.

But certainly, it is not possible to associate a con-
ceptual rigid body with its motion with each concrete
pair of dynamical functions. Therefore, the study of
this problem for sufficiently wide classes of dynam-
ical functions allows us to speak about a relatively
complete consideration of the problem of the body
motion in a medium in the framework of these model
assumptions under the quasi-stationarity conditions.
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2.6 Principal applied question of nonlinear
analysis

The instability of the rectilinear translational drag al-
lose us to pose the principal question of nonlinear
analysis in studying a finite neighborhood of such a
motion. Precisely,is it possible to find a pair of dy-
namical functionsyN ands for describing the concep-
tual body motion such that in a finite neighborhood of
this stationary motion, there exist stable limit cycles?

One of the main results of this work is apartly
negative answerto this question, precisely,for a
quasi-static description of the interaction between the
medium and the body, when the dynamical quanti-
ties yN and s depend only on the angle of attack,
for any admissible pair of obtained dynamical func-
tionsyN (α) ands(α), in the whole range of finite an-
gles of attackα ∈ (0, π/2), there are no any auto-
oscillations in the system considered.

To attain a possibleaffirmative answer to the prin-
cipal question of nonlinear analysis, in modelling the
interaction of a body with a medium, we use an ad-
ditional damping medium action, which gives a dis-
sipation to the system. Therefore, in principle, un-
der certain conditions, the appearance of stable auto-
oscillations is possible in the framework of the model
considered, but, however, the search for a body ex-
hibiting the necessary properties requires an addi-
tional experiment. This result is not only one of the
main results of the present work, but it opens anew di-
rectionin analytical studying the interaction of a body
with a medium with account for the medium damping
actions.

2.6.1 On variable dissipation in system

After certain simplifications, the general system 6–8
reduces to second-order pendulum systems in which
there is a linear dissipative force with variable coeffi-
cient alternating the sign for different angles of attack.

In this case, we therefore speak about the system
with the so-calledvariable dissipation, where the term
”variable” mainly refers not to the value of the dissi-
pation coefficient but to itssign.

In the mean, during the period with respect to an-
gle of attack, the dissipation can be positive, negative,
or zero. In the latter case we speak about thesystem
with variable dissipation in the mean.

3 Complete Integrability of Certain
Classes of Nonconservative
Systems

Also, we show that for homogeneous circular cylin-
ders moving in the water, the rectilinear translational
drag is not stable for any dynamical and geometric
parameters of such cylinders. Probably, this is related
to the motion of the cylinders in the water, when the
water damping is inessential, which does not allow us
to speak about the stability of the rectilinear transla-
tional damping. However, for cylinders having a hole
in their interior, the attainment of the above stability
is possible under certain conditions.

Therefore, under certain conditions, the account
for the medium damping action on a rigid body leads
to an affirmative answer to the principal question
of nonlinear analysis:under the body motion in a
medium with finite angles of attack, in principle, the
appearance of stable auto-oscillations is possible.
Moreover, for circular cylinder, the appearance of sta-
ble and unstable auto-oscillations is possible!

All what said above, allows us to estimate the re-
sults of the work as a whole as anew direction in an-
alytical mechanics of a rigid body interacting with a
medium.

The results of the presented work are appeared
owing to the study of the applied problem on the
rigid body motion in a resisting medium [5, 6] where
complete lists of transcendental first integrals ex-
pressed through a finite combination of elementary
functions were obtained. This circumstance allows
one to perform a complete analysis of phase trajecto-
ries and show those properties of them which exhibit
theroughnessand preserve for systems of a more gen-
eral form. The complete integrability of that systems
is related to symmetries of latent type. Therefore, the
study of sufficiently wide classes of systems having
analogous latent symmetries is of interest.

As is known, the concept of integrability is suf-
ficiently broad and indefinite in general. In its con-
structing, it is necessary to take into account what
it means (we mean a certain criterion according to
which one makes a conclusion about that the structure
of trajectories of the system considered is especially
”attractive and simple”), in which function classes the
first integrals are sought for, etc.

In this work, we follow the approach, which takes
the transcendental and, moreover, elementary func-
tions as the function class for first integrals. Here,
the transcendence is understood not in the sense of
elementary function theory(fir example, trigonomet-
rical functions), but in the sense that these function
have essentially singular points (by the classification
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accepted in theory of functions of one complex vari-
able, when a function has essentially singular points).
Moreover, we need to formally continue them to the
complex domain. As a rule, such systems are strongly
nonconservative.

3.1 Variable dissipation dynamical systems
and their general properties

3.1.1 General characteristic of variable dissipa-
tion dynamical systems

Generally speaking, the dynamics of a rigid body in-
teracting with a medium is just a field, where there
arise either dissipative systems or systems with the
so-calledantidissipation(energy supporting inside the
system itself). Therefore, it becomes urgent to con-
struct a methodology precisely for those classes of
systems which arise in modelling body motion the
contact surface of which is a plane part, the simplest
part of their exterior surface.

Since in such a modelling, one uses the experi-
mental information about the streamline flow around
properties, there arises a necessity of studying the
class of dynamical systems that exhibit the (relative)
structural stabilityproperty. Therefore, it is quite nat-
ural to introduce the definitions of relative roughness
for such systems. In this case, many of the system
considered are turned out to be (absolutely) rough in
the Andronov–Pontryagin sense.

After certain simplifications, we can reduce the
system of equations for the plane-parallel motion to
the second-order pendulum systems in which there
is a linear dissipative force with variable coefficient
whose sign alternates for different values of the peri-
odic phase variable in the system.

As was already noted early, there are important
mechanical analogies arising when comparing qual-
itative properties of the free body stationary motion
and the pendulum equilibrium in the medium flow.
Such analogies have a deep supporting meaning, since
they allows us to extend the properties of the pendu-
lum nonlinear dynamical systems to the free body dy-
namical systems. Both classes os systems belong to
the class of the so-calledpendulum dynamical systems
with zero mean variable dissipation.

Under additional conditions, we also extend the
above equivalence to the case of spatial motion, which
allows us to speak about thegeneral character of sym-
metriesin a system with zero mean variable dissipa-
tion under the plane-parallel, as well as spatial mo-
tions.

3.1.2 Examples from dynamics

Below, we highlight the classes of essentially nonlin-
ear systems of the second and third orders integrable
in transcendental (in the sense of theory of functions
of one complex variable) elementary functions. For
example such systems are five-parametric dynamical
systems including the majority of systems that are
studied early in the dynamics of a rigid body inter-
acting with a medium:

α̇ = a sinα + bω + γ1 sin5 α + γ2ω sin4 α+
+γ3ω

2 sin3 α + γ4ω
3 sin2 α + γ5ω

4 sinα
ω̇ = c sinα cosα + dω cosα+

+γ1ω sin4 α cosα + γ2ω
2 sin3 α cosα+

+γ3ω
3 sin2 α cosα + γ4ω

4 sinα cosα + γ5ω
5 cosα

In this connection, it is of reason to introduce the def-
initions of relative structural stability (relative rough-
ness) and relative structural instability (relative non-
roughness) of various degrees.

As is known, the (purely) dissipative dynamical
systems (as well as (purely) antidissipative systems),
which in our case can belong to the class of systems
with zero mean variable dissipation are as a rule struc-
turally stable ((absolutely) rough), and, on the con-
trary, the systems with zero mean variable dissipa-
tion (which, as a rule, have additional symmetries)
are either structurally unstable (non-rough) or only
relatively structurally stable (relatively rough). It is
difficult to prove the latter assertion in the general
case. However, the introduction of the concept rel-
ative roughness (and also relative non-roughness of
various degrees) allows us to present the classes of
concrete systems from the rigid body dynamics that
exhibit the above properties.

So, in [5], the authors studied and integrated two
model variants of the body plane-parallel motion in
a resisting medium, which are described by dynami-
cal systems with zero mean variable dissipation. Such
cases of motion presuppose the existence of a cer-
tain non-integrable constraint in the system consid-
ered (that is realized by a certain additional tracking
force).

For example a dynamical system of the form
α̇ = Ω + β sinα, Ω̇ = −β sinα cosα, is relatively
structurally stable (relatively rough) and topologically
equivalent to the system describing a clamped pendu-
lum placed in the running-out medium flow.

We can find its first integral being a transcenden-
tal (in the sense of theory of functions of one complex
variable such that it has essentially singular points af-
ter continuing it into the complex domain) functions
of phase variables that is expressed through a finite
combination of elementary functions.
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As is seen, the phase cylinderIR2{α,Ω} of quasi-
velocities of the system considered exhibits an inter-
esting topological structure of partition into trajecto-
ries.

On the cylinder, there are two domains (whose
closure is just the phase cylinder) filled in by trajecto-
ries of perfectly different character.

The first domain called oscillatory or finitary (it
is simply connected is entirely filled in by trajectories
of the following type. Almost every such trajectory
starts at the repelling point(2πk, 0) and ended at the
attracting point((2k + 1)π, 0), k ∈ Z. An exception
is the fixed points(πk, 0) and separatrices that either
emanate from the repelling point(2πk, 0) and enter
the saddlesS2k andS2k+1 or emanate from the sad-
dlesS2k+1 andS2k+2 and enter the attracting points
((2k + 1)π, 0). Here,Sk = (−π/2 + πk, (−1)kβ).

The second domain called rotational (it is two-
connected is entirely filled in by rotational motions
similar to rotations on the mathematical pendulum
plane. These phase trajectories envelope the phase
cylinder and are periodic on it.

Although the dynamical system considered is not
conservative, in the rotational domain of its phase
planeIR2{α, Ω} it admits the preservation of an in-
variant measure with variable density. This property
characterizes the system considered as a system with
zero mean variable dissipation.

Key separatrices (for example, the separatrix em-
anating from the point(−π/2, β) and entering the
point (3π/2, β)) are boundaries of domains in which
the motion is of different character. So, in the oscil-
latory domain containing the repelling and attracting
equilibrium points, almost all trajectories have attrac-
tors and repellers as limits sets. Hence there are no
even absolutely continuous function being the density
of an invariant measure in this domain.

The matter is different for the domain entirely
filled in by rotational motions. As was shown early,
there exists a smooth function being the density of the
invariant measure in the domain entirely filled in by
periodic trajectories not contracting to a point along
the phase cylinder.

3.2 Systems with symmetries and zero mean
variable dissipation

Let us consider systems of the form (the dot denotes
the derivative in time)

α̇ = fα(ω, sinα, cosα) (12)

ω̇k = fk(ω, sinα, cosα), k = 1, . . . , n, (13)

defined on the setS1{α mod 2π}\K× IRn{ω}, ω =
(ω1, . . . , ωn), where the functions fλ(u1, u2, u3),

λ = α, 1, . . . , n, of three variablesu1, u2, andu3 are
as follows:

fλ(−u1,−u2, u3) = −fλ(u1, u2, u3)

fα(u1, u2,−u3) = fα(u1, u2, u3)

fk(u1, u2,−u3) = −fk(u1, u2, u3)

The setK is either empty or consists of finitely
many points of the circleS1{α mod 2π}.

The latter two variablesu2 andu3 in the functions
fλ(u1, u2, u3) depend on one parameterα, but they
are distinguished in separate groups for the following
reasons. First, not in the whole their domain, they are
uniquely expressed from one another, and, second, the
first of them is odd, whereas the second is an even
function of α, which influences on the symmetry of
system 12, 13 differently.

To this system, we put in correspondence the non-
autonomous system

dωk

dα
=

fk(ω, sinα, cosα)
fα(ω, sinα, cosα)

by the substitutionτ = sinα, it reduces to the form
(k = 1, . . . , n)

dωk

dτ
=

fk(ω, τ, ϕk(τ))
fα(ω, τ, ϕα(τ))

ϕλ(−τ) = ϕλ(τ), λ = α, 1, . . . , n

In particular, the right-hand side of latter system
can be algebraic (i.e., it can be a ration between two
polynomials); sometimes, this helps to search for its
first integrals in explicit form.

The following assertion immerses the class of
systems 12, 13 in the class of dynamical systems with
zero mean variable dissipation. The inverse embed-
ding does not hold in general.

Lemma 1 Systems of the form 12, 13 are dynamical
system with zero mean variable dissipation.

This proposition is proved by using the symme-
tries of system 12, 13 listed above.

The converse assertion is not true in general, since
we can present a set of dynamical systems on a two-
dimensional cylinder that are system with zero mean
variable dissipation but do not satisfies the properties
listed above.

In this work, we mainly consider the case where
the functionsfλ(ω, τ, ϕk(τ)) (λ = α, 1, . . . , n) are
polynomials inω andτ .

To begin with, let us consider a certain class of
autonomous systems on the two-dimensional circular
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cylinder S1{α mod 2π} × IR1{ω}. For example, to
the following pendulum systems (arising in the dy-
namics of a rigid body interacting with a medium)
with parameterβ > 0:

α̇ = −ω + β sinα, ω̇ = sinα cosα (14)

α̇ = −ω + β sinα cos2 α + βω2 sinα (15)

ω̇ = sin α cosα− βω sin2 α cosα + βω3 cosα (16)

in the variables(ω, τ), we put in correspondence the
following equations with algebraic right-hand side, re-
spectively:

dω

dτ
=

τ

−ω + βτ
,
dω

dτ
=

τ + βω[ω2 − τ2]
−ω + βτ + βτ [ω2 − τ2]

.

In this case, systems 14 and 15, 16 are dynamical sys-
tems with zero mean variable dissipation, which is
easy to verify directly.

Moreover, each of them have a first integral being
a transcendental (in the sense of theory of functions of
one complex variable) function that expresses through
a finite combination of elementary functions [5].

For example, system 14 has a first integral of the
following form (depending on the value ofβ, three
cases are possible that corresponds to the existence of
foci, nodes, or degenerate nodes in the phase portrait
of the system):

β2 − 4 < 0 :
{Ω2 + βΩsinα + sin2 α}×

× exp
{

2β√
−β2+4

arctan 2Ω+β sin α√
−β2+4 sin α

}
= const

β2 − 4 > 0 :

|2Ω + (β +
√

β2 − 4 sin α)|
√

β2−4−β×
×|2Ω + (β −√

β2 − 4 sinα)|
√

β2−4+β = const

β2 − 4 = 0 :
|2Ω + β sinα|×

× exp
{
− β sin α

2Ω+β sin α

}
= const

The phase portrait of system 15, 16 can be of three
different types depending on the values of the param-
eterβ.

In the expression of its first integral, also three
cases are possible depending on the value of the con-
stantβ and corresponding to the existence of foci,
nodes, and degenerate nodes in the phase portrait of
the system.

Let us represent the parameterβ as the product:
β = σ2n2

0; after that, to system 15, 16 we put in cor-
respondence a differential equation of the form

dω

dτ
=

−n2
0τ + σω[ω2 − n2

0τ
2]

ω + σn2
0τ + στ [ω2 − n2

0τ
2]

, τ = − sinα

Introduce the following notation:C1 = 2 −
σn0, C2 = σn0, C3 = −2 − σn0. Performing
a number of changes by the formulasω − n0τ =
u1, ω + n0τ = v1, u1 = v1t1, v2

1 = p1, where
v1 6= 0, we obtain the Bernoulli-type equation

2p1

[
C1t1 + C2 +

2σ

n0
t1p1

]
=

dp1

dt1
[C3 − C1t

2
1]

By the known changep−1 = q1 for p1 6= 0, we reduce
the latter equation to the form

q̇1 = a1(t1)q1 + a2(t1)

where

a1(t1) =
2(C1t1 + C2)
C1t21 − C3

, a2(t1) =
4σt1

n0(C1t21 − C3)

(Here, the dot denotes the derivative int1.)
The general solution of the linear homogeneous

equation is represented in the form

q1 HOM (t1) = k(C1t
2
1 − C3)Q(t1), k = const

where the functionQ has the following form depend-
ing on the value of the constantC1:

Q(t1) = et1 , C1 = 0

e
2

C2√
−C1C3

arctan

√
−C1

C3
t1

, C1 > 0
(√−C1t1+

√−C3√−C1t1−
√−C3

) C2√
C1C3 , C1 < 0

To obtain the solution of the inhomogeneous equation,
we assume that the quantityk is a function oft1; we
find it by the quadrature

k(t1) =
4σ

n0

∫
Q−1(t1)

t1
(C1t21 − C3)2

dt1

Therefore, the transcendental first integral of sys-
tem 15, 16 becomes

Q−1(t1)q1(C1t
2
1 − C3)−1−

−4σ
n0

t1∫
t0

Q−1(τ1) τ1
(C1τ2

1−C3)2
dτ1 = C0

whereC0 = const.
As is seen, the final form of the first integral de-

pends on the sign of the constantC1, and, therefore,
three variants are possible. Let us examine each of
them.

FIRST VARIANT. C1 = 0. After an elemen-
tary calculation, we obtain an additional integral in
the form

e
−u1

v1

(
v−2
1 +

σ2

2
(
u1

v1
+ 1)

)
= const
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Therefore, forC1 = 0, the transcendental first inte-
gral of system 15, 16 is expressed through elementary
functions.

SECOND VARIANT. C1 > 0. The integration
leads to the function

− σ

4n0
e
−2

C2√
−C1C3

ζ
(

C2√−C1C3
sin 2ζ + cos 2ζ

)

where

ζ = arctan

√
−C1

C3
t1

As is seen, in the caseC1 > 0, the additional first
integral is expressed through elementary functions.

THIRD VARIANT . C1 < 0. By equivalent trans-
formations, the integral transforms into

σ

C1C2n0

(
2

ζ1−γ

γ − 1
− 3

ζ−γ

γ
+

ζ−1−γ

γ + 1

)

where

γ =
C2√
C1C3

> 1, ζ =
√−C1t1 +

√−C3√−C1t1 −
√−C3

Therefore, in the caseC1 < 0, the additional first in-
tegral is also expressed through elementary functions.

And so, we study the connection between the fol-
lowing three properties, which are independent for
the first glance, but they are sufficiently harmonically
combined on systems from the rigid body dynamics:

1. the distinguished class of systems 12, 13 with the
above;

2. the fact that this class of systems consists of sys-
tems with zero mean variable dissipation (in the
variableα), which allows us to consider them as
”almost” conservative systems;

3. in certain (although lower-dimensional) cases,
these systems have first integrals, which are tran-
scendental in general.

Let us present one more important example of a
higher-order system that has the properties just listed.

To the system

cα̇ = −z2 + β sinα (17)

ż2 = sin α cosα− z2
1

cosα

sinα
(18)

ż1 = z1z2
cosα

sinα
(19)

which is distinguished considered in the three dimen-
sional domain

S1{α mod 2π} \ {α = 0, α = π} × IR2{z1, z2}

(such a system can reduce to an equivalent system on
the tangent bundle of the two-dimensional sphere) and
describes the spatial motion of a rigid body in a resist-
ing medium [6], we put in correspondence the follow-
ing system with algebraic right-hand side:

dz2

dτ
=

τ − z2
1/τ

−z2 + βτ
,

dz1

dτ
=

z1z2/τ

−z2 + βτ
(20)

In this case, it is also seen that system 17–19 is a
system with zero mean variable dissipation; in order
to obtain a complete correspondence with the defini-
tion, it suffices to introduce the new phase variable
z∗1 = ln |z1|.

Moreover, this system has two first integrals (i.e.,
the full list), which are transcendental functions and
are expressed through a finite combination of elemen-
tary functions; as was mentioned above, this become
possible after establishing its correspondence to the
(non-autonomous in general) system of equations 20
with algebraic (polynomial) right-hand side.

Therefore, the systems from the rigid body dy-
namics presented above not only enter the class of
systems (12), 13 and have the mean zero variable dis-
sipation, but they have a full list of transcendental first
integrals expressed through a finite combination of el-
ementary functions. In this case, the integration of
systems 14 and 15, 16 reduces to the integration of
the corresponding equations with algebraic right-hand
side.

As was noted, to seek for first integrals of the sys-
tems considered, it is better to reduce systems of the
form 12, 13 to systems with polynomial right-hand
sides; the possibility of integrating the initial system
in elementary functions depends on their form. There-
fore, we proceed as follows: we seek for sufficient
conditions for integrability in elementary functions
of systems of equations with polynomial right-hand
sides studying systems of the most general form in
this case.

4 Conclusion

The results of the presented work were appeared ow-
ing to the study the applied problem of the rigid body
motion in a resisting medium, where we have ob-
tained complete lists of transcendental first integrals
expressed through a finite combination of elemen-
tary functions. This circumstance allows the author
to carry out the analysis of all phase trajectories and
show those their properties which have the roughness
and are preserved for systems of a more general form.
The complete integrability of such system is related
to their symmetries of latent type. Therefore, it is of
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interest to study a sufficiently wide class of dynamical
systems having analogous latent symmetries.

So, for example, the instability of the simplest
body motion, the rectilinear translational drag, is used
for methodological purposes, precisely, for finding the
unknown parameters of the medium action on a rigid
body under the quasi-stationarity conditions.

The experiment on the motion of homogeneous
circular cylinders in the water carried out in Institute
of Mechanics of M. V. Lomonosov State University
justified that in modelling the medium action on the
rigid body, it is also necessary to take into account an
additional parameter that brings a dissipation to the
system.

In studying the class of body drags with finite an-
gle of attack, the principal problem is finding those
conditions under which there exist auto-oscillations in
a finite neighborhood of the rectilinear translational
drag. Therefore, there arises the necessity of a com-
plete nonlinear study.

The initial stage of such a study is the neglect-
ing of the medium damping action on the rigid body.
Functionally, this means the assumption that the pair
of dynamical functions determining the medium ac-
tion depends only on one parameter, the angle of
attack. The dynamical systems arising under such
a nonlinear description are variable dissipation sys-
tems. Therefore, there arises the necessity to create
the methodology for studying such systems.

Generally speaking, the dynamics of a rigid body
interacting with a medium is just the field where there
arise either nonzero mean variable dissipation systems
or systems in which the energy loss in the mean dur-
ing a period can vanish. In the work, we have obtained
such a methodology owing to which it becomes possi-
ble to finally and analytically study a number of plane
and spatial model problems.

In qualitative describing the body interaction with
a medium, because of using the experimental infor-
mation about the properties of the streamline flow
around, there arises a definite dispersion in modelling
the force-model characteristics. This makes it natural
to introduce the definitions of relative roughness (rel-
ative structural stability) and to prove such a rough-
ness for the system studied. Moreover, many sys-
tems considered are merely (absolutely) Andronov–
Pontryagin rough.

These works opens a new cycle of research works
in nonlinear analysis of the body motion in a resisting
medium under the quasi-stationarity conditions and
with account of the medium damping.

All what was said above allows one to estimate
the results of the work in to totality as anew direction
in qualitative theory of ordinary differential equations
and the dynamics of a rigid body interacting with a

medium.
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