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CLASSIFICATION OF INTEGRABLE CASES
IN THE DYNAMICS OF A FOUR-DIMENSIONAL RIGID BODY
IN A NONCONSERVATIVE FIELD
IN THE PRESENCE OF A TRACKING FORCE

M. V. Shamolin UDC 517; 531.01

Abstract. This paper is a survey of integrable cases in the dynamics of a four-dimensional rigid body

under the action of a nonconservative force field. We review both new results and results obtained

earlier. The problems examined are described by dynamical systems with so-called variable dissipation

with zero mean.

The problem of a search for complete sets of transcendental first integrals of systems with dissipation

is quite current; a large number of works are devoted to it. We introduce a new class of dynamical

systems that have a periodic coordinate. Due to the existence of a nontrivial symmetry group of such

systems, we can prove that these systems possess variable dissipation with zero mean, which means

that on the average for a period with respect to the periodic coordinate, the dissipation in the system is

equal to zero, although in various domains of the phase space, either energy pumping or dissipation can

occur. Based on the results obtained, we analyze dynamical systems that appear in the dynamics of a

four-dimensional rigid body and obtain a series of new cases of complete integrability of the equations

of motion in transcendental functions that can be expressed through a finite combination of elementary

functions.
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Introduction

This paper is a survey of integrable cases in the dynamics of a four-dimensional rigid body under

the action of a nonconservative force field. We review both new results and results obtained earlier.
The problems examined are described by dynamical systems with so-called variable dissipation with
zero mean.

We study nonconservative systems for which the usual methods of studying Hamiltonian systems are
not applicable. Thus, for such systems, we must “directly” integrate the main equation of dynamics
(see [45, 47–52, 58, 60, 64, 65, 70, 79, 127].

We generalize previously known cases and obtain new cases of complete integrability in transcen-
dental functions of the equation of dynamics of a four-dimensional rigid body in a nonconservative
force field.

Of course, in the general case, the construction of a theory of integration of nonconservative systems
(even of low dimension) is a quite difficult task. In a number of cases where the systems considered
have additional symmetries, we succeed in finding first integrals expressed through finite combinations

of elementary functions (see [5, 6, 12, 17, 18, 21, 28, 29, 32–35, 37, 42, 91, 92, 146, 148, 151].
We obtain a series of complete integrable nonconservative dynamical systems with nontrivial sym-

metries. Moreover, in almost all cases, all first integrals are expressed through finite combinations

of elementary functions; these first integrals are transcendental functions of their variables. In this
case, transcendence is understood in the sense of complex analysis, when the analytic continuation of
a function into the complex plane has essentially singular points. This fact is caused by the existence

of attracting and repelling limit sets in the system (for example, attracting and repelling focuses).
We discover new integrable cases of the motion of a rigid body, including the classical problem of

the motion of a multi-dimensional spherical pendulum in a running flow of a medium.

Chapter 1 is devoted to general aspects of the integrability of dynamical systems with variable dissi-
pation. First, we propose a descriptive characteristic of such systems. The term “variable dissipation”
refers to the possibility of alternation of sign rather than to the value of the dissipation coefficient

(therefore, it is more reasonable to use the term “sign-alternating”).
Later, we define systems with variable dissipation with zero (nonzero) mean based on the divergence

of the vector field of the system, which characterizes the change of the phase volume in the phase space

of the system considered (see [91, 95, 103, 107, 109, 110, 112, 118, 120]).
We introduce a class of autonomous dynamical systems with one periodic phase coordinate possess-

ing certain symmetries that are typical for pendulum-type systems. We show that this class of systems

can be naturally embedded in the class of systems with variable dissipation with zero mean, i.e., on the
average for the period with respect to the periodic coordinate, the dissipation in the system is equal to
zero, although in various domains of the phase space, either energy pumping or dissipation can occur,

but they balance each other in a certain sense. We present some examples of pendulum-type systems
on lower-dimension manifolds from the dynamics of a rigid body in a nonconservative field.

For multi-parametric third-order systems, we present sufficient conditions of existence of first inte-

grals that are expressed through finite combinations of elementary functions.
We deal with three properties that seem, at first glance, independent:

(1) a class of systems with symmetries specified above;
(2) the fact that this class consists of systems with variable dissipation with zero mean (with respect

to the existing periodic variable), which allows us to consider them as “almost” conservative
systems;

(3) in certain (although lower-dimensional) cases, these systems have a complete set of first integrals,

which, in general, are transcendental (in the sense of complex analysis).
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In Chap. 2, we recall general aspects of the dynamics of a free multi-dimensional rigid body: the

notion of the tensor of angular velocity of the body, the joint dynamical equations of motion on the
direct product Rn × so(n), and the Euler and Rivals formulas in the multi-dimensional case.

We also consider the tensor of inertia of a four-dimensional (4D) rigid body. In this work, we study
two possible cases in which there exist two relations between the principal moments of inertia:

(i) there are three equal principal moments of inertia (I2 = I3 = I4);

(ii) there are two pairs of equal principal moments of inertia (I1 = I2 and I3 = I4).

In Chaps. 2 and 3, we systematize results on the study of equations of motion of a four-dimensional
(4D) rigid body in a nonconservative force field for the case (i). The form of these equations is taken
from the dynamics of realistic rigid bodies of lesser dimension that interact with a resisting medium

by laws of jet flow when the body is influenced by a nonconservative tracing force. Under the action
of this force, the following two cases are possible. In the first case, the velocity of some characteristic
point of the body remains constant, which means that the system possesses a nonintegrable servo

constraint (see Chap. 2). In the second case, the body is subjected to a nonconservative tracing force
such that throughout the motion the center of mass of the body moves rectilinearly and uniformly;
this means that in the system there exists a nonconservative couple of forces (see Chap. 3). See

also [19–21, 27, 44, 54, 55, 57, 59, 61–63, 66–68, 72–78, 80, 82–87, 90–94, 96–107, 111–117, 119–125,
128–138, 140–144, 149].

Moreover, in Chap. 2, besides the four existing analytic invariant relations (a nonintegrable con-

nection and three integrals that show that the components of the tensor of angular speed vanish),
we obtain four additional transcendental first integrals expressed in terms of finite combinations of
elementary functions. In Chap. 3, we find additional transcendental first integrals besides the four

known analytic first integrals (the squared velocity of the center of mass and the three integrals that
show that the components of the tensor of angular speed vanish).

The results relate to the case where all interaction of the medium with the body part is concentrated

on a part of the surface of the body that has the form of a three-dimensional disk, while the action of
the force is concentrated in the direction perpendicular to this disk. These results are systematized
and are preserved in invariant form. Moreover, we introduce an extra dependence of the moment of

the nonconservative force on the angular velocity. This dependence can be further extended to cases
of motion in spaces of higher dimension.

Many results of this paper were regularly presented at scientific seminars, including the Trofi-

mov seminar “Current problems of geometry and mechanics” (see [22]) under the supervision of
D. V. Georgievskii and M. V. Shamolin [1, 2, 23–26].

Chapter 1

INTEGRABILITY IN ELEMENTARY FUNCTIONS

OF SOME CLASSES OF NONCONSERVATIVE SYSTEMS

We study nonconservative systems for which the usual methods of studying Hamiltonian systems are
not applicable. Thus, for such systems, we must “directly” integrate the main equation of dynam-
ics. We recall known facts in a more universal form and also present some new cases of complete

integrability in transcendental functions in the dynamics of a 4D-rigid body in a nonconservative field.
The results of the present paper develop previous studies, including an applied problem from the

dynamics of a rigid body (see [42, 44, 46–48, 149]), for which complete lists of transcendental first

integrals that can be expressed through finite combinations of elementary functions were obtained.
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Later, this allows us to perform a complete analysis of all phase trajectories and to specify their rough

properties that are preserved for systems of a more general form. The complete integrability of such
systems is related to hidden symmetries.

As is well known, the notion of integrability is, generally speaking, quite vague.
We must always take into account in what sense this notion is understood (what criterion allows

one to judge whether trajectories of a dynamical system are simple in one sense or another), in what
functional class the first integrals are searched, etc. (see [6, 33, 34, 44, 54, 57]).

In this paper, we consider first integrals that belong to the functional class consisting of tran-

scendental elementary functions. Here the term “transcendental” is meant in the sense of complex
analysis, i.e., a transcendental function is a function that possesses essential singularities after an
analytic continuation in the complex plane (see [12, 44]).

1. Preliminaries

The construction of a theory of integration of nonconservative systems (even lower-dimensional)
is a difficult problem. However, in some cases where the systems being studied possess additional

symmetries, one can find first integrals in the form of finite combinations of elementary functions
(see [91]).

The present paper is a development of the planar problem on the motion of a rigid body in a

resisting medium in which the domain of the contact between the body and the medium is a planar
part of the exterior surface of the body. The force field in this problem is constructed by accounting for
the action of the medium on the body in the quasi-stationary jet or separated flow. It turns out that

the study of such motions can be reduced to systems with dissipation of energy ((purely) dissipative
systems or systems in dissipative fields) or to systems with energy pumping (so-called systems with
antidissipation or systems with accelerating forces). Note that similar problems have earlier appeared

in applied aerodynamics (see [14, 15]).
The problems that were considered earlier stimulated the development of qualitative tools that

substantially supplement the qualitative theory of nonconservative systems with dissipation of any

sign (see [91]).
Nonlinear effects in problems of planar and spatial dynamics of a rigid body were examined by

qualitative methods. We justify the need to introduce the notions of relative roughness and relative

nonroughness of different orders (see [4, 28, 29, 39, 52, 60, 64, 88, 91, 149].
In the present work, the following results are obtained.

(1) We develop methods of qualitative analysis of dissipative and antidissipative systems, which al-

lows us to obtain bifurcation conditions for the appearance of stable and unstable self-oscillations
and conditions of the absence of singular trajectories. We succeed in extending the study of
planar topographical Poincaré systems and comparison systems to higher dimensions. We ob-

tain sufficient Poisson-stability conditions (everywhere density near itself) of some classes of
nonclosed trajectories of dynamical systems (see [91]);

(2) in 2D- and 3D-dynamics of a rigid body, we obtain complete lists of first integrals of dissipative

and antidissipative systems that are transcendental (in the sense of the classification of their
singularities) functions, which, in some cases, can be expressed through elementary functions.
We introduce the notions of relative roughness and relative nonroughness of different orders for

integrated systems (see [4, 28, 29, 39, 52, 60, 64, 88, 91, 149];
(3) we obtain multi-parameter families of topologically nonequivalent phase portraits that appear

in purely dissipative systems (i.e., systems with variable dissipation with nonzero (positive)

mean). Almost all portraits of such families are rough (see [91]);
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(4) we detect new qualitative analogies between the motion of a free body in a resisting medium

and the motion of a fixed body in a flow of a running medium.

2. Dynamical Systems with Variable Dissipation

2.1. Descriptive characteristics of dynamical systems with variable dissipation. As the
initial modeling of the action of a medium on a rigid body, we used experimental information on the
properties of jet flow. Naturally it became necessary to study the class of dynamical systems that

possess the property of (relative) roughness (relative structural stability). Therefore, it is natural to
introduce these notions for such systems. Many of the systems considered are rough in the sense of
Andronov and Pontryagin (see [4, 28, 29, 39, 52, 60, 64, 88, 91, 149].

After some transformations (for example, in 2D-dynamics), the dynamical part of the general system
of the equations of plane-parallel motion can be reduced to a pendulum system of second order
containing a linear nonconservative (sign-alternating dissipative) force with a coefficient, which can

change sign for different values of the periodic phase coordinate of the system.
Thus, in this case, we speak of systems with so-called variable dissipation, where the term “variable”

refers not only to the value of the dissipation coefficient but to its sign (and so the term “sign-

alternating” is more adequate).
On the average by a period (with respect to the periodic coordinate), dissipation can be positive

(“purely” dissipative systems), negative (systems with accelerating forces), or zero (but does not

vanish identically). In the last case, we speak of systems with variable dissipation with zero mean
(these systems can be associated with “almost” conservative systems).

As was noted above, we obtain important mechanical analogies in comparing the qualitative prop-

erties of a free body and the equilibrium of a pendulum in a flow of a medium. Such analogies have
a deep sense since they allow one to transfer properties of a nonlinear dynamical system for a pen-
dulum to dynamical systems for a free body. Both systems belong to the class of so-called pendulum

dynamical systems with variable dissipation with zero mean.
Under additional conditions, the equivalence described above can be extended to the case of spatial

motion, which allows one to speak of a general character of symmetries of systems with variable

dissipation with zero mean in plane-parallel and spatial motions (for planar and spatial versions of a
pendulum in a flow of a medium, see also [91]).

Subsequently, we present some classes of nonlinear systems of the second, third, and higher orders

that are integrable in the class of transcendental (in the sense of the theory of functions of complex
variables) elementary functions, for example, five-parameter dynamical systems including the majority
of systems examined earlier in the dynamics of a low-dimensional (2D and 3D) rigid body interacting

with a medium:

α̇ = a sinα+ bω + γ1 sin
5 α+ γ2ω sin4 α+ γ3ω

2 sin3 α+ γ4ω
3 sin2 α+ γ5ω

4 sinα,

ω̇ = c sinα cosα+ dω cosα+ γ1ω sin4 α cosα+ γ2ω
2 sin3 α cosα+ γ3ω

3 sin2 α cosα+

+ γ4ω
4 sinα cosα+ γ5ω

5 cosα.

Purely dissipative dynamical systems (and also (purely) antidissipative systems), which, in our
case, can belong to the class of systems with variable dissipation with nonzero mean, are, as a rule,

structurally stable ((absolutely) rough), whereas systems with variable dissipation with zero mean
(which usually possess additional symmetries) are either structurally unstable (nonrough) or only
relatively structurally stable (relatively rough). However, the proof of the last assertion in the general

case is a difficult problem.
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For example, the dynamical system of the form

α̇ = Ω+ β sinα,

Ω̇ = −β sinα cosα
(2.1)

is relatively structurally stable (relatively rough) and is topologically equivalent to the system describ-
ing a fixed pendulum in a running flow of a medium (see [91]).

One can obtain its first integral, which is a transcendental (in the sense of the theory of functions

of a complex variable, as a function whose analytical continuation in the complex plane has essential
singularities) function of phase variables that can be expressed through a finite combination of ele-
mentary functions (see [91]). The phase cylinder R2{α,Ω} of quasi-velocictes of the system considered

has an interesting topological structure of a splitting into trajectories.
Although the dynamical system considered is not conservative, in the rotational domain (and only

in this domain) of its phase plane R
2{α,Ω}, it admits the preservation of invariant measure with

variable density. This property characterizes this system as a system with variable dissipation with
zero mean (see [91]).

2.2. A definition of a system with variable dissipation with zero mean. We study systems of

ordinary differential equations that have a periodic phase coordinate. Such systems possess symmetries
under which their average phase volume with respect to the periodic coordinate is preserved. For
example, the following pendulum system with smooth and periodic (of period T ) with respect to α

right-hand side V(α, ω) of the form

α̇ = −ω + f(α), f(α+ T ) = f(α),

ω̇ = g(α), g(α+ T ) = g(α),
(2.2)

preserves its phase area on the phase cylinder within the period T :

T∫

0

divV(α, ω)dα =

T∫

0

(
∂

∂α
(−ω + f(α)) +

∂

∂ω
g(α)

)
dα =

T∫

0

f ′(α)dα = 0. (2.3)

This system is equivalent to the equation of a pendulum

α̈− f ′(α)α̇ + g(α) = 0, (2.4)

in which the integral of the coefficient f ′(α) of the dissipative term α̇ over the period is equal to zero.
We see that this system has symmetries under which it becomes a system with variable dissipation

with zero mean in the sense of the following definition (see [91]).

Definition 2.1. Consider a smooth autonomous system of order (n + 1) in the normal form defined
on the cylinder R

n{x} × S1{α mod 2π}, where α is a periodic coordinate of period T > 0. The

divergence of the right-hand side V(x, α) (which, in general, is a function of all phase variables and
does not vanish identically) of this system is denoted by divV(x, α). This system is called a system
with variable dissipation with zero (respectively, nonzero) mean if the function

T∫

0

divV(x, α)dα (2.5)

vanishes (respectively, does not vanish) identically. In some cases (for example, when at some points
of the circle S1{α mod 2π} singularities appear), this integral is understood in the sense of principal

value.
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We note that it is quite difficult to give a general definition of a system with variable dissipation

with zero (nonzero) mean. The definition presented above is based on the notion of divergence (as is
well known, the divergence of the right-hand side of a system in the normal form characterizes the
change of the phase volume in the phase space of the given system).

3. Systems with Symmetries and Variable Dissipation with Zero Mean

Consider a system of the following form (the dot denotes the derivative with respect to time):

α̇ = fα(ω, sinα, cosα),

ω̇k = fk(ω, sinα, cosα), k = 1, . . . , n,
(3.1)

defined on the set

S1{α mod 2π} \K × R
n{ω}, ω = (ω1, . . . , ωn), (3.2)

where sufficiently smooth functions fλ(u1, u2, u3), λ = α, 1, . . . , n, of three variables u1, u2, u3 are

such that
fλ(−u1,−u2, u3) = −fλ(u1, u2, u3),

fα(u1, u2,−u3) = fα(u1, u2, u3),

fk(u1, u2,−u3) = −fk(u1, u2, u3);

(3.3)

moreover, the functions fk(u1, u2, u3) are defined for u3 = 0 for any k = 1, . . . , n.
The set K is either empty or consists of a finite number of points of the circle S1{α mod 2π}.
The last two variables u2, u3 in the functions fλ(u1, u2, u3) depend on the same parameter α, but

we assume that these variables belong to different groups for the following reason. First, they cannot
be uniquely expressed through one another on their entire domain and, second, u2 is an odd function
of α whereas u3 is an even function, which affects the symmetries of system (3.1).

We establish a correspondence between system (3.1) and the following nonautonomous system:

dωk

dα
=

fk(ω, sinα, cosα)

fα(ω, sinα, cosα)
, k = 1, . . . , n. (3.4)

By the substitution τ = sinα, it can be reduced to the form

dωk

dτ
=

fk(ω, τ, ϕk(τ))

fα(ω, τ, ϕα(τ))
, k = 1, . . . , n,

ϕλ(−τ) = ϕλ(τ), λ = α, 1, . . . , n.

(3.5)

The last system, in particular, can have an algebraic right-hand side (i.e., it can be the ratio of two
polynomials), which simplifies the search for its first integrals in explicit form.

The following theorem states that the class of systems (3.1) is a subclass of the class of dynamical
systems with variable dissipation with zero mean. Note that, in general, the converse is invalid.

Theorem 3.1. Systems of the form (3.1) are dynamical systems with variable dissipation with zero
mean.

Proof. The proof of this theorem is based on certain symmetries (3.3) of system (3.1) listed above and
the periodicity of the right-hand side of the system with respect to α.

Indeed, the divergence of the vector field of system (3.1) equals

∂fα(ω, sinα, cosα)

∂u2
cosα− ∂fα(ω, sinα, cosα)

∂u3
sinα+

n∑
k=1

∂fk(ω, sinα, cosα)

∂u1
. (3.6)

The following integral of the first two terms in (3.6) vanishes:
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2π∫

0

{
∂fα(ω, sinα, cosα)

∂u2
d sinα+

∂fα(ω, sinα, cosα)

∂u3
d cosα

}

=

2π∫

0

∂fα(ω, sinα, cosα)

∂α
dα = hα(ω) ≡ 0, (3.7)

since the function fα(ω, sinα, cosα) is periodic with respect to α.
Further, by the third equation in (3.3), for any k = 1, . . . , n we have

∂fk(ω, sinα, cosα)

∂u1
= cosα · ∂gk(ω, sinα)

∂u1
, (3.8)

where the function gk(u1, u2) is sufficiently smooth for any k = 1, . . . , n.
Then the integral over the period 2π of the right-hand side of Eq. (3.8) equals

2π∫

0

∂gk(ω, sinα)

∂u1
d sinα = hk(ω) ≡ 0 (3.9)

for any k = 1, . . . , n. From Eqs. (3.7) and (3.9) we obtain Theorem 3.1.

The converse assertion is invalid: there exist dynamical systems on the two-dimensional cylinder
that are systems with variable dissipation with zero mean, but do not possess the symmetries listed
above.

In this paper, we basically consider the case where the functions fλ(ω, τ, ϕk(τ)) (λ = α, 1, . . . , n)
are polynomials of ω and τ .

Example 3.1. We consider pendulum systems on the two-dimensional cylinder S1{α mod 2π} ×
R
1{ω} with parameter b > 0, which appear in the dynamics of a rigid body (see [91]):

α̇ = −ω + b sinα,

ω̇ = sinα cosα,
(3.10)

and
α̇ = −ω + b sinα cos2 α+ bω2 sinα,

ω̇ = sinα cosα− bω sin2 α cosα+ bω3 cosα.
(3.11)

We establish a correspondence between these systems in the variables (ω, τ) and the equations with
algebraic right-hand sides

dω

dτ
=

τ

−ω + bτ
, (3.12)

and
dω

dτ
=

τ + bω
[
ω2 − τ2

]
−ω + bτ + bτ [ω2 − τ2]

(3.13)

of the form (3.5), respectively. These systems are dynamical systems with variable dissipation with
zero mean, which can be easily verified.

Indeed, the divergences of their right-hand sides are equal to b cosα and

b cosα
[
4ω2 + cos2 α− 3 sin2 α

]
,

respectively; they belong to the class of systems (3.1).
Moreover, each of them possesses a first integral, which is a transcendental (in the sense of the

theory of functions of complex variables) function that can be expressed through a finite combination

of elementary functions.
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We present another important example of a higher-order system that possesses the properties listed

above.

Example 3.2. Consider the following system with a parameter b, which is defined in the three-

dimensional domain

S1{α mod 2π} \ {α = 0, α = π} × R
2{z1, z2} (3.14)

(this system is separated from a system on the tangent bundle T∗S2 of the two-dimensional sphere S2):

α̇ = −z2 + b sinα,

ż2 = sinα cosα− z21
cosα

sinα
,

ż1 = z1z2
cosα

sinα
.

(3.15)

This system describes the motion of a rigid body in a resistive medium. We establish a correspondence

between this system and the following nonautonomous system with algebraic right-hand side (τ =
sinα):

dz2
dτ

=
τ − z21/τ

−z2 + bτ
,

dz1
dτ

=
z1z2/τ

−z2 + bτ
.

(3.16)

We see that system (3.15) is a system with variable dissipation with zero mean. To obtain the full

correspondence with the definition, we introduce the new phase variable

z∗1 = ln |z1|. (3.17)

The divergence of the right-hand side of system (3.15) in the Cartesian coordinates α, z∗1 , z2 is equal
to b cosα. Taking into account (3.14), we have (in the sense of principal value)

lim
ε→0

π−ε∫

ε

b cosα+ lim
ε→0

2π−ε∫

π+ε

b cosα = 0. (3.18)

Moreover, this system possesses two first integrals (i.e., a complete set) that are transcendental func-
tions, which can be expressed through a finite combination of elementary functions. This becomes

possible after establishing a correspondence between it and the system (nonautonomous, generally
speaking) of equations with an algebraic (polynomial) right-hand side (3.16).

Systems (3.10), (3.11), and (3.15) belong to the class of systems (3.1), possess variable dissipation
with zero mean, and have a complete set of transcendental first integrals that can be expressed through

a finite combination of elementary functions.
So, to find the first integrals of the systems considered, it is convenient to reduce systems of the

form (3.1) to systems with polynomial right-hand sides (3.5), which allow one to perform integration

in terms of elementary functions of the initial system. Thus, we find sufficient conditions for the
integrability in elementary functions of systems with polynomial right-hand sides and examine systems
of the most general form.

4. Systems in the Plane and on a Two-Dimensional Cylinder

Earlier, the author proved a series of assertions regarding many-parameter systems of ordinary

differential equations with algebraic right-hand side (see, e.g., [91]). We recall some of these assertions.
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Proposition 4.1. A seven-parameter family of systems of equations in the plane R
2{x, y}

ẋ = a1x+ b1y + β1x
3 + β2x

2y + β3xy
2,

ẏ = c1x+ d1y + β1x
2y + β2xy

2 + β3y
3,

(4.1)

possesses a first integral (in general, transcendental) that can be expressed through elementary func-
tions.

Corollary 4.1. For any parameters a1, b1, c1, d1, β1, β2, and β3, the system

α̇ = a1 sinα+ b1ω + β1 sin
3 α+ β2ω sin2 α+ β3ω

2 sinα,

ω̇ = c1 sinα cosα+ d1ω cosα+ β1ω sin2 α cosα+ β2ω
2 sinα cosα+ β3ω

3 cosα
(4.2)

on the two-dimensional cylinder {(α, ω) ∈ R
2 : α mod 2π} possesses a first integral (in general,

transcendental) that can be expressed through elementary functions.

In particular, systems (3.10) and (3.11) can be obtained from this system if

a1 = b, b1 = −1, c1 = 1, d1 = β1 = β2 = β3 = 0

and
a1 = b, b1 = −1, c1 = 1, d1 = −b, β1 = −b, β2 = 0, β3 = b,

respectively.
The above arguments can be easily generalized. We consider the possibility of complete integration

(in elementary functions) of systems of a more general form: the nonlinearity is characterized by an

arbitrary homogeneous form of odd degree 2n− 1.
In this case, we have the following assertion, which is more general than Proposition 4.1.

Proposition 4.2. The (2n + 3)-parameter family of systems of equations

ẋ = a1x+ b1y + δ1x
2n−1 + δ2x

2n−2y + · · ·+ δ2n−2x
2y2n−3 + δ2n−1xy

2n−2,

ẏ = c1x+ d1y + δ1x
2n−2y + δ2x

2n−3y2 + · · ·+ δ2n−2xy
2n−2 + δ2n−1y

2n−1
(4.3)

in the plane R
2{x, y} possesses a first integral (in general, transcendental), which can be expressed

through elementary functions.

Indeed, the family of Eqs. (4.3) depends on 2n− 1 + 4 independent parameters since the total
nonlinearity of an odd degree is characterized by 4n parameters subject to 2n+ 1 conditions (the
other four parameters are contained in the linear part).

Corollary 4.2. For any parameters a1, b1, c1, d1, and δ1, . . . , δ2n−1, the systems

α̇ = a sinα+ bω + δ1 sin
2n−1 α+ δ2ω sin2n−2 α+ · · ·+ δ2n−1ω

2n−2 sinα,

ω̇ = c sinα cosα+ dω cosα+ δ1ω sin2n−2 α cosα+ δ2ω
2 sin2n−3 α cosα+ · · ·+ δ2n−1ω

2n−1 cosα

(4.4)
on the two-dimensional cylinder {(α, ω) ∈ R

2 : α mod 2π} possesses a transcendental first integral,

which can be expressed through elementary functions.

Systems (3.10), (3.11), and (3.15) are relatively rough (see [91]), but if we violate the symme-
tries (3.3) introduced for systems of general form (3.1) (for example, by introducing additional terms
in their right-hand sides), then the number of topologically distinct phase portraits can substantially

change.
In [91], we obtained a multi-parametric family of phase portraits of a system with variable dissipation

with nonzero mean (whose typical portraits are (absolutely) rough), which is a perturbation of a

dynamical system with variable dissipation with zero mean of the form (3.11). This family (as families
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obtained earlier, see [91]) contains an infinite number of topologically nonequivalent phase portraits

on a two-dimensional phase cylinder.

5. Systems of the Tangent Bundle of the Two-Dimensional Sphere

On the tangent bundle T∗S2 of the two-dimensional sphere S2{θ, ψ}, we consider the following

dynamical system:

θ̈ + bθ̇ cos θ + sin θ cos θ − ψ̇2 sin θ

cos θ
= 0,

ψ̈ + bψ̇ cos θ + θ̇ψ̇

[
1 + cos2 θ

sin θ cos θ

]
= 0.

(5.1)

This system describes a spherical pendulum in a flow of a running medium (see [91]). Moreover, the
system possesses the conservative moment

sin θ cos θ (5.2)

and the force moment, which linearly depends of the velocity with a variable coefficient:

b

(
θ̇

ψ̇

)
cos θ. (5.3)

Other coefficients in the equations are the connection coefficients, namely,

Γθ
ψψ = − sin θ

cos θ
, Γψ

θψ =
1 + cos2 θ

sin θ cos θ
. (5.4)

In fact, system (5.1) has order 3 since the variable ψ is cyclic and the system contains only the

variable ψ̇.

Proposition 5.1. The equation

ψ̇ = 0 (5.5)

defines a family of integral planes for system (5.1).
Moreover, Eq. (5.5) reduces system (5.1) to an equation that describes a cylindrical pendulum in a

flow of a running medium (see [91]).

Proposition 5.2. System (5.1) is equivalent to the following system:

θ̇ = −z2 + b sin θ,

ż2 = sin θ cos θ − z21
cos θ

sin θ
,

ż1 = z1z2
cos θ

sin θ
,

ψ̇ = z1
cos θ

sin θ

(5.6)

on the tangent bundle T∗S2{z1, z2, θ, ψ} of the two-dimensional sphere S2{θ, ψ}. Moreover, the first
three equations of system (5.6) form a closed system of third order and coincide with system (3.15)

(if we set α = θ). The fourth equation of system (5.6) has been separated due to the cyclicity of the
variable ψ.
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Example 5.1. We examine a system of the form (3.15), which can be reduced to (3.16), and the

following system, which appears in the spatial (3D) dynamics of a rigid body interacting with a
medium:

α̇ = −z2 + b
(
z21 + z22

)
sinα+ b sinα cos2 α,

ż2 = sinα cosα+ bz2
(
z21 + z22

)
cosα− bz2 sin

2 α cosα− z21
cosα

sinα
,

ż1 = bz1
(
z21 + z22

)
cosα− bz1 sin

2 α cosα+ z1z2
cosα

sinα
,

(5.7)

which corresponds to the following system with algebraic right-hand side:

dz2
dτ

=
τ + bz2

(
z21 + z22

)− bz2τ
2 − z21/τ

−z2 + bτ
(
z21 + z22

)
+ bτ (1− τ2)

,

dz1
dτ

=
bz1

(
z21 + z22

)− bz1τ
2 + z1z2/τ

−z2 + bτ
(
z21 + z22) + bτ(1− τ2

) .
(5.8)

Thus, we consider two systems: the initial system (5.7) and the corresponding algebraic system (5.8).
Similarly, we can pass to homogeneous coordinates uk, k = 1, 2, by the formulas

zk = ukτ. (5.9)

By this change of variables, system (3.16) (see above) can be transformed to the form

τ
du2
dτ

+ u2 =
τ − u21τ

−u2τ + bτ
,

τ
du1
dτ

+ u1 =
u1u2τ

−u2τ + bτ
,

(5.10)

which, in turn, corresponds to the equation

du2
du1

=
1− bu2 + u22 − u21

2u1u2 − bu1
. (5.11)

Since the identity

d

(
1− βu2 + u22

u1

)
+ du1 = 0 (5.12)

is integrable, this equation can be integrated in elementary functions and in the coordinates (τ, z1, z2)
has a first integral of the form

z21 + z22 − βz2τ + τ2

z1τ
= const .

System (5.7) after reduction corresponds to the system

τ
du2
dτ

+ u2 =
τ + bu2τ

3
(
u21 + u22

)− bu2τ
3 − u21τ

−u2τ + bτ3
(
u21 + u22

)
+ bτ (1− τ2)

,

τ
du1
dτ

+ u1 =
bu1τ

3
(
u21 + u22

)− bu1τ
3 + u1u2τ

−u2τ + bτ3
(
u21 + u22

)
+ bτ (1− τ2)

,

(5.13)

which can also be reduced to (5.11).
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6. Some Generalizations

The following question arises: Can the system

dz

dx
=

ax+ by + cz + c1z
2/x+ c2zy/x+ c3y

2/x

d1x+ ey + fz
,

dy

dx
=

gx+ hy + iz + i1z
2/x+ i2zy/x+ i3y

2/x

d1x+ ey + fz
,

(6.1)

possessing a singularity of type 1/x, be integrated in elementary functions? This system is a general-
ization of systems (3.16) and (5.8) in three-dimensional phase domains.

A series of results concerning this question has already been obtained (see [91]); here we present a
brief review of these results.

As above, we introduce the substitutions

y = ux, z = vx (6.2)

and reduce system (6.1) to the following form:

x
dv

dx
+ v =

ax+ bux+ cvx+ c1v
2x+ c2vux+ c3u

2x

d1x+ eux+ fvx
, (6.3)

x
du

dx
+ u =

gx+ hux+ ivx+ i1v
2x+ i2vux+ i3u

2x

d1x+ eux+ fvx
, (6.4)

which is equivalent to

x
dv

dx
=

ax+ bux+ (c− d1)vx+ (c1 − f)v2x+ (c2 − e)vux+ c3u
2x

d1x+ eux+ fvx
, (6.5)

x
du

dx
=

gx+ (h− d1)ux+ ivx+ i1v
2x+ (i2 − f)vux+ (i3 − e)u2x

d1x+ eux+ fvx
. (6.6)

We establish a correspondence between this system and the following nonautonomous equation with

algebraic right-hand side:

dv

du
=

a+ bu+ cv + c1v
2 + c2vu+ c3u

2 − v[d1 + eu+ fv]

g + hu+ iv + i1v2 + i2vu+ i3u2 − u[d1 + eu+ fv]
. (6.7)

Integration of this equation reduces to integration of the equation in complete differentials

[
g + hu+ iv + i1v

2 + i2vu+ i3u
2 − d1u− eu2 − fuv

]
dv

=
[
a+ bu+ cv + c1v

2 + c2vu+ c3u
2 − d1v − euv − fv2

]
du. (6.8)

Generally speaking, we have a 15-parameter family of equations of the form (6.8). To integrate the
last identity in elementary functions as a homogeneous equation, it suffices to impose the following
six restrictions:

g = 0, i = 0, i1 = 0, e = c2, h = c, i2 = 2c1 − f. (6.9)

We introduce nine parameters β1, . . . , β9 and consider them as independent:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2, β6 = c3, β7 = d1, β8 = f, β9 = i3. (6.10)

Thus, Eq. (6.8) under conditions (6.9) and (6.10) is reduced to the form

dv

du
=

β1 + β2u+ (β3 − β7)v + (β4 − β8)v
2 + β6u

2

(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u2
, (6.11)
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whereas system (6.5) (6.6) is reduced to the form

x
dv

dx
=

β1 + β2u+ (β3 − β7)v + (β4 − β8)v
2 + β6u

2

β7 + β5u+ β8v
, (6.12)

x
du

dx
=

(β3 − β7)u+ 2(β4 − β8)vu+ (β9 − β5)u
2

β7 + β5u+ β8v
, (6.13)

after which Eq. (6.11) can be integrated by a finite combination of elementary functions.
Indeed, integrating identity (6.8), we obtain

d

[
(β3 − β7)v

u

]
+ d

[
(β4 − β8)v

2

u

]
+ d[(β9 − β5)v] + d

[
β1
u

]
− d[β2 ln |u|]− d[β6u] = 0, (6.14)

which implies the following invariant relation:

(β3 − β7)v

u
+

(β4 − β8)v
2

u
+ (β9 − β5)v +

β1
u

− β2 ln |u| − β6u = C1 = const, (6.15)

and then in the coordinates (x, y, z), the first integral in the form

(β4 − β8)z
2 − β6y

2 + (β3 − β7)zx+ (β9 − β5)zy + β1x
2

yx
− β2 ln

∣∣∣y
x

∣∣∣ = const . (6.16)

Therefore, we can conclude that the following, generally speaking nonconservative, system of third
order depending on nine parameters is integrable in elementary functions:

dz

dx
=

β1x+ β2y + β3z + β4z
2/x+ β5zy/x+ β6y

2/x

β7x+ β5y + β8z
,

dy

dx
=

β3y + (2β4 − β8)zy/x+ β9y
2/x

β7x+ β5y + β8z
.

(6.17)

Corollary 6.1. On the set

S1{α mod 2π} \ {α = 0, α = π} × R
2{z1, z2}, (6.18)

the third-order system

α̇ = β7 sinα+ β5z1 + β8z2,

ż2 = β1 sinα cosα+ β2z1 cosα+ β3z2 cosα+ β4z
2
2

cosα

sinα
+ β5z1z2

cosα

sinα
+ β6z

2
1

cosα

sinα
,

ż1 = β3z1 cosα+ (2β4 − β8)z1z2
cosα

sinα
+ β9z

2
1

cosα

sinα
,

(6.19)

which depend on nine parameters and possesses, generally speaking, a transcendental first integral,
which can be expressed through elementary functions:

(β4 − β8)z
2
2 − β6z

2
1 + (β3 − β7)z2 sinα+ (β9 − β5)z2z1 + β1 sin

2 α2

z1 sinα
− β2 ln

∣∣∣ z1
sinα

∣∣∣ = const . (6.20)

In particular, system (6.19) for β1 = 1, β2 = β3 = β4 = β5 = β9 = 0, β6 = β8 = −1, and β7 = b
coincides with system (3.15).

To find an additional first integral of the nonautonomous system (6.1), we can use the first inte-
gral (6.16), which is expressed through a finite combination of elementary functions.

First, we transform relation (6.15) as follows:

(β4 − β8)v
2 + [(β9 − β5)u+ (β3 − β7)] v + f1(u) = 0, (6.21)

where

f1(u) = β1 − β6u
2 − β2u ln |u| − C1u.
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Formally, v can be found from the relation

v1,2(u) =
1

2(β4 − β8)

{
(β5 − β9)u+ (β7 − β3)±

√
f2(u)

}
, (6.22)

where

f2(u) = A1 +A2u+A3u
2 +A4u ln |u|,

A1 = (β3 − β7)
2 − 4β1(β4 − β8), A2 = 2(β9 − β5)(β3 − β7) + 4C1(β4 − β8),

A3 = (β9 − β5)
2 + 4β6(β4 − β8), A4 = 4β2(β4 − β8).

Then the required quadrature for the additional (in general, transcendental) first integral (for example,

of system (6.12), (6.13) or (6.5), (6.6), where Eq. (6.13) is used) becomes

∫
dx

x
=

∫
[β7 + β5u+ β8v1,2(u)]du

(β3 − β7)u+ (β9 − β5)u2 + 2(β4 − β8)uv1,2(u)
=

∫ [
B1 +B2u+B3

√
f2(u)

]
du

B4u
√

f2(u)
,

Bk = const, k = 1, . . . , 4. (6.23)

The required quadrature for the search for an additional (in general, transcendental) first integral

(for system (6.12), (6.13) or (6.5), (6.6), where Eq. (6.12) is used) becomes∫
dx

x
=

∫
[β7 + β5u(v) + β8v]dv

β1 + β2u(v) + (β3 − β7)v + (β4 − β8)v2 + β6u2(v)
; (6.24)

in this case, the function u(v) must be obtained by solving the implicit equation (6.15) with respect
to u (which, in the general case, is not evident).

Sufficient conditions of expressability of integrals in (6.24) through finite combinations of elementary

functions are stated by the following lemma.

Lemma 6.1. For A4 = 0, i.e., for

β2 = 0 (6.25)

or for

β4 = β8, (6.26)

the indefinite integral in (6.24) can be expressed through a finite combinations of elementary functions.

Theorem 6.1. Under the sufficient conditions of Lemma 6.1 (in this case, property (6.25) holds), sys-
tem (6.19) possesses a complete set of first integrals that can be expressed through a finite combination
of elementary functions.

The dynamical systems considered in the present paper are systems with variable dissipation with

zero mean with respect to the periodic coordinate. In many cases, such systems possess a complete
set of first integrals that can be expressed through elementary functions.

We have presented several cases of complete integrability in the dynamics of the spatial (3D) motion

of a body in a nonconservative field. Moreover, we are dealing with three properties that, at first glance,
seem to be independent:

(1) the class of systems (3.1) with marked symmetries specified above;

(2) this class of systems possesses variable dissipation with zero mean (with respect to the vari-
able α); this allows one to consider them as “almost” conservative systems;

(3) in some (sufficiently low-dimensional) cases, these systems possess a complete set of (generally

speaking, transcendental from the standpoint of complex analysis) first integrals.
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The method of reduction of initial systems whose right-hand sides contain polynomials of trigono-

metric functions to systems with polynomial right-hand sides allows one to find (or to prove the
absence) of first integrals for systems of a more general form that perhaps do not possess the symme-
tries mentioned above (see [91]).

Chapter 2

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN FOUR-DIMENSIONAL SPACE, I

In this chapter, we systematize some earlier and newer results on the study of the equations of motion

of axisymmetric four-dimensional (4D) rigid bodies in nonconservative force fields. The form of these
equations is taken from the dynamics of real lower-dimensional rigid bodies interacting with a resisting
medium by the laws of jet flows, where a body is influenced by a nonconservative tracing force; under

the action of this force, the velocity of some characteristic point of the body remains constant, which
means that the system possesses a nonintegrable servo constraint (see [5, 31, 36, 46, 53, 71, 77, 81,
88, 139, 152]).

Earlier (see [42, 81]), the present author proved the complete integrability of the equations of plane-
parallel motion of a body in a resisting medium under jet flow conditions when the system of dynamical
equations possesses a first integral which is a transcendental (in the sense of the theory of functions

of a complex variable) function of quasi-velocities having essential singularities. It was assumed that
the interaction of the medium with the body is concentrated on a part of the surface of the body that
has the form of a (one-dimensional) plate.

Subsequently (see [76, 77, 95]), the planar problem was generalized to the spatial (three-dimensional)
case, where the system of dynamical equations possesses a complete set of transcendental first integrals.
In this case, it was assumed that the interaction of the medium with the body is concentrated on a

part of the surface of the body that has the form of a planar (two-dimensional) disk.
In this chapter, we discuss results, both new results and results obtained earlier, concerning the

case where the interaction of the medium with the body is concentrated on a part of the surface of the

body that has the form of a three-dimensional disk and the force acts in the direction perpendicular
to the disk. We systematize these results and formulate them in invariant form. We also introduce
an additional dependence of the moment of a nonconservative force on the angular velocity; this

dependence can be generalized to the motion in higher-dimensional spaces.

7. General Discussion

7.1. Two cases of dynamical symmetry of a four-dimensional body. Assume that a four-
dimensional rigid body Θ of massm with smooth three-dimensional boundary ∂Θ is under the influence
of a nonconservative force field; this can be interpreted as motion of the body in a resisting medium that

fills up the four-dimensional domain of Euclidean space E4. We assume that the body is dynamically
symmetric. If the body has two independent principal moments of inertia, then in some coordinate
system Dx1x2x3x4 attached to the body the operator of inertia has the form

diag{I1, I2, I2, I2} (7.1)

or the form

diag{I1, I1, I3, I3}. (7.2)
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In the first case, the body is dynamically symmetric in the hyperplane Dx2x3x4 while in the second

case the two-dimensional planes Dx1x2 and Dx3x4 are planes of dynamical symmetry of the body.

7.2. Dynamics on so(4) and R
4. The configuration space of a free, n-dimensional rigid body is

the direct product

R
n × SO(n) (7.3)

of the space R
n, which defines the coordinates of the center of mass of the body, and the rotation

group SO(n), which defines rotations of the body about its center of mass and has dimension

n+
n(n− 1)

2
=

n(n+ 1)

2
.

Therefore, the dynamical part of the equations of motion has the same dimension, whereas the di-

mension of the phase space is equal to n(n+ 1).
In particular, if Ω is the tensor of the angular velocity of a four-dimensional rigid body (it is a second-

rank tensor, see [18–22, 25–27, 40, 41, 66]), Ω ∈ so(4), then the part of the dynamical equations of

motion corresponding to the Lie algebra so(4) has the following form (see [7, 9, 10, 13, 66, 147–149]):

Ω̇Λ + ΛΩ̇ + [Ω,ΩΛ+ ΛΩ] = M, (7.4)

where

Λ = diag{λ1, λ2, λ3, λ4}, (7.5)

λ1 =
−I1 + I2 + I3 + I4

2
, λ2 =

I1 − I2 + I3 + I4
2

,

λ3 =
I1 + I2 − I3 + I4

2
, λ4 =

I1 + I2 + I3 − I4
2

,

M = MF is the natural projection of the moment of external forces F acting on the body in R
4 on the

natural coordinates of the Lie algebra so(4) and [ ] is the commutator in so(4). The skew-symmetric

matrix corresponding to this second-rank tensor Ω ∈ so(4) is represented in the form⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠ , (7.6)

where ω1, ω2, ω3, ω4, ω5, and ω6 are the components of the tensor of angular velocity corresponding
to the projections on the coordinates of the Lie algebra so(4).

Obviously, the following relations hold:

λi − λj = Ij − Ii, i, j = 1, . . . , 4. (7.7)

To calculate the moment of an external force acting to the body, we need to construct the mapping

R
4 × R

4 → so(4) (7.8)

that maps a pair of vectors

(DN,F) ∈ R
4 × R

4 (7.9)

into an element of the Lie algebra so(4), where

DN = {0, x2N , x3N , x4N}, F = {F1, F2, F3, F4}, (7.10)

and F is an external force acting on the body. For this purpose, we construct the following auxiliary
matrix (

0 x2N x3N x4N
F1 F2 F3 F4

)
. (7.11)
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Then the right-hand side of system (7.4) takes the form

M =
{
x3NF4 − x4NF3, x4NF2 − x2NF4, −x4NF1, x2NF3 − x3NF2, x3NF1, −x2NF1

}
. (7.12)

The dynamical systems studied in the following chapters, generally speaking, are not conservative
and in fact are dynamical systems with variable dissipation with zero mean (see [91]). We need to

examine by direct methods one part of the main system of dynamical equations, namely, the Newton
equation, which serves as the equation of motion of the center of mass, i.e., the part of the dynamical
equations of motion corresponding to the space R

4:

mwC = F, (7.13)

where wC is the acceleration of the center of mass C of the body and m is its mass. Moreover, due
to the higher-dimensional Rivals formula (it can be obtained by the operator method) we have the
following relations:

wC = wD +Ω2DC+ EDC, wD = v̇D +ΩvD, E = Ω̇, (7.14)

where wD is the acceleration of the point D, F is the external force acting on the body (in our case,
F = S), and E is the tensor of angular acceleration (second-rank tensor).

Thus, the system of equations (7.4) and (7.13) of tenth order on the manifold R
4× so(4) is a closed

system of dynamical equations of the motion of a free four-dimensional rigid body under the action
of an external force F. This system is separated from the kinematic part of the equations of motion

on the manifold (7.3) and can be examined independently.

8. General Problem of Motion Under a Tracing Force

Consider a motion of a homogeneous, dynamically symmetric (case (7.1)), rigid body with “front

end face” (a three-dimensional disk interacting with a medium that fills four-dimensional space) in
the field of a resistance force S under quasi-stationarity conditions (see [16, 17, 30, 35, 36, 42, 43, 89,
108, 126, 145, 152].

Let (v, α, β1, β2) be the (generalized) spherical coordinates of the velocity vector of the center of
the three-dimensional disk lying on the axis of symmetry of the body, let

Ω =

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

be the tensor of angular velocity of the body, and let Dx1x2x3x4 be the coordinate system attached
to the body such that the axis of symmetry CD coicides with the axis Dx1 (recall that C is the center
of mass) and the axes Dx2, Dx3, and Dx4 lie in the hyperplane of the disk, while I1, I2, I3 = I2,
I4 = I2, and m are the characteristics of inertia and mass.

We adopt the following expansions in projections onto the axes of the coordinate systemDx1x2x3x4:

DC = {−σ, 0, 0, 0},
vD =

{
v cosα, v sinα cos β1, v sinα sinβ1 cos β2, v sinα sinβ1 sin β2

}
.

(8.1)

In the case (7.1) we additionally have an expansion for the function of the influence of the medium
on the four-dimensional body:

S = {−S, 0, 0, 0}, (8.2)

i.e., in this case F = S.
Then the part of the dynamical equations of motion (including the analytic Chaplygin functions [16,

17]; see below) that describes the motion of the center of mass and corresponds to the space R
4, in
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which tangent forces of the influence of the medium on the three-dimensional disk vanish, takes the

form

v̇ cosα− α̇v sinα− ω6v sinα cos β1 + ω5v sinα sin β1 cos β2 − ω3v sinα sinβ1 sin β2

+σ
(
ω2
6 + ω2

5 + ω2
3

)
= − S

m
,

(8.3)

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1 + ω6v cosα− ω4v sinα sinβ1 cos β2

+ω2v sinα sin β1 sin β2 − σ(ω4ω5 + ω2ω3)− σω̇6 = 0,
(8.4)

v̇ sinα sin β1 cos β2 + α̇v cosα sin β1 cos β2 + β̇1v sinα cos β1 cos β2 − β̇2v sinα sin β1 sinβ2

−ω5v cosα+ ω4v sinα cos β1 − ω1v sinα sinβ1 sin β2 − σ(−ω1ω2 + ω4ω6) + σω̇5 = 0,
(8.5)

v̇ sinα sin β1 sin β2 + α̇v cosα sin β1 sin β2 + β̇1v sinα cos β1 sin β2 + β̇2v sinα sinβ1 cos β2

+ω3v cosα− ω2v sinα cos β1 + ω1v sinα sin β1 cos β2 + σ(ω2ω6 + ω1ω5)− σω̇3 = 0,
(8.6)

where

S = s(α)v2, σ = CD, v > 0. (8.7)

Further, the auxiliary matrix (7.11) for calculating the moment of the resistance force has the form(
0 x2N x3N x4N
−S 0 0 0

)
; (8.8)

then the part of the dynamical equations of motion that describes the motion of the body about the
center of mass and corresponds to the Lie algebra so(4), becomes

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0, (8.9)

(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) = 0, (8.10)

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, (8.11)

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) = 0, (8.12)

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2, (8.13)

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2. (8.14)

Thus, the phase space of system (8.3)–(8.6), (8.9)–(8.14) of tenth order is the direct product of the
four-dimensional manifold and the Lie algebra so(4):

R
1 × S3 × so(4). (8.15)

We note that system (8.3)–(8.6), (8.9)–(8.14), due to the existing dynamical symmetry

I2 = I3 = I4, (8.16)

possesses cyclic first integrals

ω1 ≡ ω0
1 = const, ω2 ≡ ω0

2 = const, ω4 ≡ ω0
4 = const . (8.17)

We will henceforth consider the dynamics of the system on zero levels:

ω0
1 = ω0

2 = ω0
4 = 0. (8.18)
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If we consider a more general problem on the motion of a body under a tracing force T that lies on

the straight line CD = Dx1 and assume that the relation

v ≡ const (8.19)

is satisfied throughout the motion (see [91]), then instead of F1 system (8.3)–(8.6), (8.9)–(8.14) contains

T − s(α)v2, σ = DC. (8.20)

Choosing the value T of the tracing force appropriately, we can assume Eq. (8.19) throughout the
motion. Indeed, expressing T on the basis of system (8.3)–(8.6), (8.9)–(8.14), we obtain for cosα �= 0
the relation

T = Tv(α, β1, β2,Ω) = mσ
(
ω2
3 + ω2

5 + ω2
6

)
+ s(α)v2

[
1− mσ

2I2

sinα

cosα
Γv

(
α, β1, β2,

Ω

v

)]
, (8.21)

where

Γv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
sinβ1 sin β2 + x3N

(
α, β1, β2,

Ω

v

)
sin β1 cosβ2

+ x2N

(
α, β1, β2,

Ω

v

)
cosβ1; (8.22)

here we used conditions (8.17)–(8.19).

This procedure can be interpreted in two ways. First, we have transformed the system using the
tracing force (control) that enables us to consider the class (8.19) of motions of interest. Second, we
can treat this as an order-reduction procedure. Indeed, system (8.3)–(8.6), (8.9)–(8.14) generates the

following independent system of sixth order:

α̇v cosα cos β1 − β̇1v sinα sinβ1 + ω6v cosα− σω̇6 = 0, (8.23)

α̇v cosα sin β1 cos β2 + β̇1v sinα cos β1 cosβ2 − β̇2v sinα sin β1 sin β2 − ω5v cosα+ σω̇5 = 0, (8.24)

α̇v cosα sin β1 sin β2 + β̇1v sinα cos β1 sinβ2 + β̇2v sinα sin β1 cos β2 + ω3v cosα− σω̇3 = 0, (8.25)

2I2ω̇3 = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, (8.26)

2I2ω̇5 = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2, (8.27)

2I2ω̇6 = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2, (8.28)

which, in addition to the permanent parameters specified above, contains the parameter v.
System (8.23)–(8.28) is equivalent to the system

α̇v cosα+ v cosα [ω6 cos β1 − ω5 sin β1 cos β2 + ω3 sin β1 sin β2]

+σ [−ω̇6 cos β1 + ω̇5 sin β1 cos β2 − ω̇3 sin β1 sin β2] = 0,
(8.29)

β̇1v sinα− v cosα [ω5 cos β1 cos β2 + ω6 sin β1 − ω3 cos β1 sin β2]

+σ [ω̇5 cos β1 cos β2ω̇6 sin β1 − ω̇3 cos β1 sin β2] = 0,
(8.30)

β̇2v sinα sinβ1 + v cosα [ω3 cos β2 + ω5 sin β2] + σ [−ω̇3 cos β2 − ω̇5 sin β2] = 0, (8.31)

ω̇3 =
v2

2I2
x4N

(
α, β1, β2,

Ω

v

)
s(α), (8.32)
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ω̇5 = − v2

2I2
x3N

(
α, β1, β2,

Ω

v

)
s(α), (8.33)

ω̇6 =
v2

2I2
x2N

(
α, β1, β2,

Ω

v

)
s(α). (8.34)

We introduce new quasi-velocities. For this purpose, we transform ω3, ω5, and ω6 by means of two
rotations: ⎛

⎝z1
z2
z3

⎞
⎠ = T1(−β1) ◦ T3(−β2)

⎛
⎝ω3

ω5

ω6

⎞
⎠ , (8.35)

where

T1(β1) =

⎛
⎝1 0 0

0 cos β1 − sinβ1
0 sin β1 cos β1

⎞
⎠ , T3(β2) =

⎛
⎝cos β2 − sinβ2 0

sin β2 cosβ2 0
0 0 1

⎞
⎠ . (8.36)

Therefore, the following relations hold:

z1 = ω3 cos β2 + ω5 sin β2,

z2 = −ω3 cos β1 sinβ2 + ω5 cos β1 cos β2 + ω6 sin β1,

z3 = ω3 sin β1 sin β2 − ω5 sinβ1 cos β2 + ω6 cos β1.

(8.37)

As we see from (8.29)–(8.34), we cannot solve the system with respect to α̇, β̇1, and β̇2 on the
manifold

O1 =
{
(α, β1, β2, ω3, ω5, ω6) ∈ R

6 : α =
π

2
k, β1 = πl, k, l ∈ Z

}
. (8.38)

Therefore, on the manifold (8.38) the uniqueness theorem is formally violated. Moreover, for even
k and any l, an indeterminate form appears due to the degeneration of the spherical coordinates

(v, α, β1, β2). For odd k, the uniqueness theorem is obviously violated since the first equation (8.29)
is degenerate.

This implies that system (8.29)–(8.34) outside (and only outside) the manifold (8.38) is equivalent

to the system

α̇ = −z3 +
σv

2I2

s(α)

cosα
Γv

(
α, β1, β2,

Ω

v

)
, (8.39)

ż3 =
v2

2I2
s(α)Γv

(
α, β1, β2,

Ω

v

)
− (

z21 + z22
) cosα
sinα

− σv

2I2

s(α)

sinα
z2Δv

(
α, β1, β2,

Ω

v

)

+
σv

2I2

s(α)

sinα
z1Θv

(
α, β1, β2,

Ω

v

)
,

(8.40)

ż2 = − v2

2I2
s(α)Δv

(
α, β1, β2,

Ω

v

)
+ z2z3

cosα

sinα
+ z21

cosα

sinα

cos β1
sin β1

+

+
σv

2I2

s(α)

sinα
z3Δv

(
α, β1, β2,

Ω

v

)
−− σv

2I2

s(α)

sinα

cos β1
sin β1

z1Θv

(
α, β1, β2,

Ω

v

)
,

(8.41)

ż1 =
v2

2I2
s(α)Θv

(
α, β1, β2,

Ω

v

)
+ z1z3

cosα

sinα
− z1z2

cosα

sinα

cos β1
sin β1

−

− σv

2I2

s(α)

sinα
z3Θv

(
α, β1, β2,

Ω

v

)
+

σv

2I2

s(α)

sinα

cos β1
sin β1

z2Θv

(
α, β1, β2,

Ω

v

)
,

(8.42)
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β̇1 = z2
cosα

sinα
+

σv

2I2

s(α)

sinα
Δv

(
α, β1, β2,

Ω

v

)
, (8.43)

β̇2 = −z1
cosα

sinα sin β1
+

σv

2I2

s(α)

sinα sin β1
Θv

(
α, β1, β2,

Ω

v

)
, (8.44)

where

Δv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β1 sinβ2 + x3N

(
α, β1, β2,

Ω

v

)
cos β1 cos β2

− x2N

(
α, β1, β2,

Ω

v

)
sin β1,

(8.45)

Θv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β2 − x3N

(
α, β1, β2,

Ω

v

)
sin β2, (8.46)

and the function Γv (α, β1, β2,Ω/v) can be represented in the form (8.22).
Here and in the discussion that follows, the dependence on the group of variables (α, β1, β2,Ω/v) is

meant as a composite dependence on (α, β1, β2, z1/v, z2/v, z3/v) due to (8.37).

The uniqueness theorem for system (8.29)–(8.34) on the manifold (8.38) for odd k is violated in
the following sense: for odd k, a nonsingular phase trajectory of system (8.29)–(8.34) passes through
almost all points of the manifold (8.38), intersecting the manifold (8.38) at right angle, and there

exists a phase trajectory that at any moment of time completely coincides with the point specified.
However, physically these trajectories are different since they correspond to different values of the
tracing force.

We prove this assertion. As was shown above, to maintain a constraint of the form (8.19), we must
take a value of T for cosα �= 0 according to (8.21).

Let

lim
α→π/2

s(α)

cosα
Γv

(
α, β1, β2,

Ω

v

)
= L

(
β1, β2,

Ω

v

)
. (8.47)

Note that |L| < +∞ if and only if

lim
α→π/2

∣∣∣∣ ∂∂α
(
Γv

(
α, β1, β2,

Ω

v

)
s(α)

)∣∣∣∣ < +∞. (8.48)

For α = π/2, the required value of the tracing force is defined by the equation

T = Tv

(π
2
, β1, β2,Ω

)
= mσ

(
ω2
3 + ω2

5 + ω2
6

)− mσLv2

2I2
. (8.49)

where ω3, ω5, and ω6 are arbitrary.
On the other hand, maintaining the rotation about some point W by the tracing force, we must

choose this force according to the relation

T = Tv

(π
2
, β1, β2,Ω

)
=

mv2

R0
, (8.50)

where R0 is the distance between C and W .
Relations (8.21) and (8.50) define, in general, different values of the tracing force T for almost all

points of the manifold (8.38), which proves our assertion.
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9. Case Where the Moment of a Nonconservative Force

Is Independent of the Angular Velocity

9.1. Reduced system. As in the choice of Chaplygin analytic functions (see [16, 17]), we take the
dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα,

x2N

(
α, β1, β2,

Ω

v

)
= x2N0(α, β1, β2) = A sinα cos β1,

x3N

(
α, β1, β2,

Ω

v

)
= x3N0(α, β1, β2) = A sinα sin β1 cosβ2,

x4N

(
α, β1, β2,

Ω

v

)
= x4N0(α, β1, β2) = A sinα sin β1 sinβ2,

(9.1)

where A,B > 0 and v �= 0. We see that in the system considered, the moment of nonconservative
forces in independent of the angular velocity (but depends on the angles α, β1, and β2). Moreover,
the functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), Θv (α, β1, β2,Ω/v) in system (8.39)–(8.44) assume

the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα, Δv

(
α, β1, β2,

Ω

v

)
≡ Θv

(
α, β1, β2,

Ω

v

)
≡ 0. (9.2)

Then, due to the nonintegrable constraint (8.19) outside the manifold (8.38), the dynamical part of
the equations of motion (system (8.39)–(8.44)) has the form of the following analytic system:

α̇ = −z3 +
σABv

2I2
sinα, (9.3)

ż3 =
ABv2

2I2
sinα cosα− (

z21 + z22
) cosα
sinα

, (9.4)

ż2 = z2z3
cosα

sinα
+ z21

cosα

sinα

cos β1
sin β1

, (9.5)

ż1 = z1z3
cosα

sinα
− z1z2

cosα

sinα

cosβ1
sinβ1

, (9.6)

β̇1 = z2
cosα

sinα
, (9.7)

β̇2 = −z1
cosα

sinα sin β1
. (9.8)

Further, introducing dimensionless variables and parameters and a new differentiation as follows:

zk 	→ n0vzk, k = 1, 2, 3, n2
0 =

AB

2I2
, b = σn0, 〈˙〉 = n0v〈 ′〉, (9.9)

we reduce system (9.3)–(9.8) to the form

α′ = −z3 + b sinα, (9.10)

z′3 = sinα cosα− (
z21 + z22

) cosα
sinα

, (9.11)

z′2 = z2z3
cosα

sinα
+ z21

cosα

sinα

cos β1
sin β1

, (9.12)

z′1 = z1z3
cosα

sinα
− z1z2

cosα

sinα

cos β1
sin β1

, (9.13)

β′
1 = z2

cosα

sinα
, (9.14)
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β′
2 = −z1

cosα

sinα sin β1
. (9.15)

We see that the sixth-order system (9.10)–(9.15) (which can be considered as a system on the
tangent bundle TS3 of the three-dimensional sphere S3, see below) contains the independent fifth-

order system (9.10)–(9.14) on its own five-dimensional manifold.
For the complete integration of system (9.10)–(9.15), in general, we need five independent first

integrals. However, after the change of variables(
z1
z2

)
→

(
z
z∗

)
, z =

√
z21 + z22 , z∗ = z2/z1, (9.16)

system (9.10)–(9.15) splits as follows:

α′ = −z3 + b sinα, (9.17)

z′3 = sinα cosα− z2
cosα

sinα
, (9.18)

z′ = zz3
cosα

sinα
, (9.19)

z′∗ = (±)z
√

1 + z2∗
cosα

sinα

cosβ1
sinβ1

, (9.20)

β′
1 = (±)

zz∗√
1 + z2∗

cosα

sinα
, (9.21)

β′
2 = (∓)

z√
1 + z2∗

cosα

sinα sin β1
. (9.22)

We see that the sixth-order system splits into independent subsystems of lower order: system (9.17)–

(9.19) has order three and system (9.20), (9.21) (after a change of the independent variable) order
two. Thus, for the complete integration of system (9.17)–(9.22) it suffices to specify two independent
first integrals of system (9.17)–(9.19), one first integral of system (9.20), (9.21), and an additional first

integral that “attaches” Eq. (9.22).
Note that system (9.17)–(9.19) can be considered on the tangent bundle TS2 of the two-dimensional

sphere S2.

9.2. Complete list of invariant relations. System (9.17)–(9.19) has the form of a system that

appears in the dynamics of a three-dimensional (3D) rigid body in a field of nonconservative forces.
First, we establish a correspondence between the third-order system (9.17)–(9.19) and the nonau-

tonomous second-order system

dz3
dα

=
sinα cosα− z2 cosα/ sinα

−z3 + b sinα
,

dz

dα
=

zz3 cosα/ sinα

−z3 + b sinα
.

(9.23)

Applying the substitution τ = sinα, we rewrite system (9.23) in algebraic form

dz3
dτ

=
τ − z2/τ

−z3 + bτ
,

dz

dτ
=

zz3/τ

−z3 + bτ
.

(9.24)

Introducing homogeneous variables by the formulas

z = u1τ, z3 = u2τ, (9.25)
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we reduce system (9.24) to the following form:

τ
du2
dτ

+ u2 =
1− u21
−u2 + b

,

τ
du1
dτ

+ u1 =
u1u2

−u2 + b
,

(9.26)

which is equivalent to the system

τ
du2
dτ

=
1− u21 + u22 − bu2

−u2 + b
,

τ
du1
dτ

=
2u1u2 − bu1
−u2 + b

.

(9.27)

We establish a correspondence between the second-order system (9.27) and the nonautonomous

first-order equation

du2
du1

=
1− u21 + u22 − bu2

2u1u2 − bu1
, (9.28)

which can be easily reduced to exact-differential form:

d

(
u22 + u21 − bu2 + 1

u1

)
= 0. (9.29)

Thus, Eq. (9.28) has the following first integral:

u22 + u21 − bu2 + 1

u1
= C1 = const, (9.30)

which expresses in terms of the previous variables has the form

z23 + z2 − bz3 sinα+ sin2 α

z sinα
= C1 = const . (9.31)

Remark 9.1. Consider system (9.17)–(9.19) with variable dissipation with zero mean (see [91]) which
becomes conservative for b = 0:

α′ = −z3,

z′3 = sinα cosα− z2
cosα

sinα
,

z′ = zz3
cosα

sinα
.

(9.32)

It possesses two analytic first integrals of the form

z23 + z2 + sin2 α = C∗
1 = const, (9.33)

z sinα = C∗
2 = const . (9.34)

Obviously, the ratio of the two first integrals (9.33) and (9.34) is also a first integral of system (9.32).
However, for b �= 0, neither of the functions

z23 + z2 − bz3 sinα+ sin2 α (9.35)

and (9.34) is a first integral of system (9.17)–(9.19) but their ratio is a first integral for any b.

Further, we find the explicit form of the additional first integral of the third-order system (9.17)–
(9.19). For this purpose, we transform the invariant relation (9.30) for u1 �= 0 as follows:

(
u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (9.36)
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We see that the parameters of this invariant relation satisfy the condition

b2 + C2
1 − 4 ≥ 0, (9.37)

and the phase space of system (9.17)–(9.19) is stratified into a family of surfaces defined by Eq. (9.36).
Thus, by relation (9.30), the first equation of system (9.27) has the form

τ
du2
dτ

=
2
(
1− bu2 + u22

)− C1U1(C1, u2)

−u2 + b
, (9.38)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4

(
u22 − bu2 + 1

)}
; (9.39)

the integration constant C1 is defined by condition (9.37).
Therefore, the quadrature for the search for the additional first integral of system (9.17)–(9.19)

becomes ∫
dτ

τ
=

∫
(b− u2)du2

2
(
1− bu2 + u22

)− C1

{
C1 ±

√
C2
1 − 4

(
u22 − bu2 + 1

)}
/2

. (9.40)

Obviously, the left-hand side (up to an additive constant) equals

ln | sinα|. (9.41)

If

u2 − b

2
= w1, b21 = b2 + C2

1 − 4, (9.42)

then the right-hand side of Eq. (9.40) has the form

− 1

4

∫
d
(
b21 − 4w2

1

)
(
b21 − 4w2

1

)± C1

√
b21 − 4w2

1

− b

∫
dw1

(b21 − 4w2
1)± C1

√
b21 − 4w2

1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4w2
1

C1
± 1

∣∣∣∣∣±
b

2
I1, (9.43)

where

I1 =

∫
dw3√

b21 − w2
3(w3 ± C1)

, w3 =
√

b21 − 4w2
1 . (9.44)

In the calculation of the integral (9.44), the following three cases are possible.

I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4 +

√
b21 − w2

3

w3 ± C1
± C1√

b2 − 4

∣∣∣∣∣+

+
1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4−

√
b21 − w2

3

w3 ±C1
∓ C1√

b2 − 4

∣∣∣∣∣+ const; (9.45)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const; (9.46)

III. b = 2:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (9.47)

833



Returning to the variable

w1 =
z3

sinα
− b

2
, (9.48)

we obtain the final expression for I1:

I. b > 2:

I1 = − 1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4± 2w1√
b21 − 4w2

1 ± C1

± C1√
b2 − 4

∣∣∣∣∣
+

1

2
√
b2 − 4

ln

∣∣∣∣∣
√
b2 − 4∓ 2w1√
b21 − 4w2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣∣+ const; (9.49)

II. b < 2:

I1 =
1√

4− b2
arcsin

±C1

√
b21 − 4w2

1 + b21

b1

(√
b21 − 4w2

1 ± C1

) + const; (9.50)

III. b = 2:

I1 = ∓ 2w1

C1

(√
b21 − 4w2

1 ± C1

) + const . (9.51)

Thus, we have found an additional first integral for the third-order system (9.17)–(9.19) and we
have the complete set of first integrals that are transcendental functions of their phase variables.

Remark 9.2. We must substitute the left-hand side of the first integral (9.30) into the expression of

this first integral instead of C1. Then the additional first integral obtained has the following structure
(similar to the transcendental first integral in planar dynamics):

ln | sinα|+G2

(
sinα,

z3
sinα

,
z

sinα

)
= C2 = const . (9.52)

Thus, for the integration of the sixth-order system (9.17)–(9.22), we have found two independent first

integrals. As was mentioned above, to integrate it completely, it suffices to find one first integral for
(potentially separated) system (9.20), (9.21) and an additional first integral that “attaches” Eq. (9.22).

To find a first integral for (potentially separated) system (9.20), (9.21), we establish a correspondence

between it and the following nonautonomous first-order equation:

dz∗
dβ1

=
1 + z2∗
z∗

cos β1
sin β1

. (9.53)

After integration, this leads to the invariant relation√
1 + z2∗
sin β1

= C3 = const, (9.54)

which in the variables z1 and z2 has the form√
z21 + z22

z1 sin β1
= C3 = const . (9.55)

Further, to find an additional first integral that “attaches” Eq. (9.22), we establish a correspondence
between Eqs. (9.22) and (9.20) and the following nonautonomous equation:

dz∗
dβ2

= − (
1 + z2∗

)
cos β1. (9.56)

Since, by (9.54),

C3 cos β1 = ±
√
C2
3 − 1− z2∗ , (9.57)
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we have
dz∗
dβ2

= ∓ 1

C3

(
1 + z2∗

)√
C2
3 − 1− z2∗ . (9.58)

Integrating the last relation, we arrive at the following quadrature:

∓(β2 + C4) =

∫
C3dz∗

(1 + z2∗)
√
C2
3 − 1− z2∗

, C4 = const . (9.59)

Integrating this relation we obtain

∓ tan(β2 + C4) =
C3z∗√

C2
3 − 1− z2∗

, C4 = const . (9.60)

In the variables z1 and z2 the last invariant relation has the form

∓ tan(β2 + C4) =
C3z2√(

C2
3 − 1

)
z21 − z22

, C4 = const . (9.61)

Finally, we have the following form of the additional first integral that “attaches” Eq. (9.22):

arctan
C3z∗√

C2
3 − 1− z2∗

± β2 = C4, C4 = const (9.62)

or

arctan
C3z2√(

C2
3 − 1

)
z21 − z22

± β2 = C4, C4 = const . (9.63)

Thus, in the case considered, the system of dynamical equations (8.3)–(8.6) and (8.9)–(8.14) under

condition (9.1) has eight invariant relations: the nonintegrable analytic constraint of the form (8.19),
the cyclic first integrals of the form (8.17), (8.18), the first integral of the form (9.31), the first integral
expressed by relations (9.45)–(9.52), which is a transcendental function of the phase variables (in the

sense of complex analysis) expressed through a finite combination of elementary functions, and, finally,
the transcendental first integrals of the form (9.54) (or (9.55)) and (9.62) (or (9.63)).

Theorem 9.1. System (8.3)–(8.6), (8.9)–(8.14) under conditions (8.19), (9.1), (8.18) possesses eight
invariant relations (complete set), four of which are transcendental functions from the point of view of
complex analysis. Moreover, all the relations are expressed through finite combinations of elementary

functions.

9.3. Topological analogies. Consider the following fifth-order system:

ξ̈ + b∗ξ̇ cos ξ + sin ξ cos ξ − [
η̇1

2 + η̇2
2 sin2 η1

] sin ξ
cos ξ

= 0,

η̈1 + b∗η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
− η̇2

2 sin η1 cos η1 = 0,

η̈2 + b∗η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+ 2η̇1η̇2

cos η1
cos η1

= 0, b∗ > 0,

(9.64)

which describes a fixed four-dimensional pendulum in a flow of a running medium for which the

moment of forces is independent of the angular velocity, i.e., a mechanical system in a nonconservative
field (see [14, 15, 150]). In general, the order of such a system is equal to 6, but the phase variable η2
is a cyclic variable, which leads to the stratification of the phase space and reduces the order of the

system.
The phase space of this system is the tangent bundle

TS3
{
ξ̇, η̇1, η̇2, ξ, η1, η2

}
(9.65)
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of the three-dimensional sphere S3{ξ, η1, η2}. The equation that transforms system (9.64) into the

system on the tangent bundle of the two-dimensional sphere

η̇2 ≡ 0, (9.66)

and the equations of great circles

η̇1 ≡ 0, η̇2 ≡ 0 (9.67)

define families of integral manifolds.
It is easy to verify that system (9.64) is equivalent to a dynamical system with variable dissipation

with zero mean on the tangent bundle (9.65) of the three-dimensional sphere. Moreover, the following
theorem holds.

Theorem 9.2. System (8.3)–(8.6), (8.9)–(8.14) under conditions (8.19), (9.1), and (8.18) is equiva-
lent to the dynamical system (9.64).

Proof. Indeed it suffices to set α = ξ, β1 = η1, β2 = η2, and b = −b∗.

For more general topological analogies, see [91].

10. Case Where the Moment of a Nonconservative Force
Depends on the Angular Velocity

10.1. Introduction of the dependence on the angular velocity. This chapter is devoted to

the dynamics of a four-dimensional rigid body in four-dimensional space. Since the present section
is devoted to the study of motion in the case where the moment of forces depends on the tensor of
angular velocity, we introduce this dependence in a more general situation. This also allows us to
introduce this dependence for multi-dimensional bodies.

Let x = (x1N , x2N , x3N , x4N ) be the coordinates of the point N of application of a nonconservative
force (influence of the medium) acting on the three-dimensional disk and let Q = (Q1, Q2, Q3, Q4) be
the components of the force S of the influence of the medium independent of the tensor of the angular

velocity. We consider only the linear dependence of the functions (x1N , x2N , x3N , x4N ) on the tensor
of angular velocity since this introduction is not itself a priori obvious (see [14, 15]).

We adopt the following dependence:

x = Q+R, (10.1)

where R = (R1, R2, R3, R4) is a vector-valued function containing the components of the tensor of
angular velocity. The dependence of the function R on the components of the tensor of angular

velocity is gyroscopic:

R =

⎛
⎜⎜⎝
R1

R2

R3

R4

⎞
⎟⎟⎠ = −1

v

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
h1
h2
h3
h4

⎞
⎟⎟⎠ , (10.2)

where (h1, h2, h3, h4) are some positive parameters (cf. [14, 15, 91]).
Since x1N ≡ 0, we have

x2N = Q2 − h1
ω6

v
, x3N = Q3 + h1

ω5

v
, x4N = Q4 − h1

ω3

v
. (10.3)
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10.2. Reduced system. As in the choice of the Chaplygin analytic functions (see [16, 17])

Q2 = A sinα cos β1,

Q3 = A sinα sin β1 cosβ2,

Q4 = A sinα sin β1 sinβ2, A > 0,

(10.4)

we take the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα, B > 0,

x2N

(
α, β1, β2,

Ω

v

)
= A sinα cos β1 − h

ω6

v
, h = h1 > 0, v �= 0,

x3N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 cos β2 + h

ω5

v
, h = h1 > 0, v �= 0,

x4N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 sin β2 − h

ω3

v
, h = h1 > 0, v �= 0.

(10.5)

This shows that in the problem considered, there is an additional damping (but accelerating in certain
domains of the phase space) moment of a nonconservative force (i.e., there is a dependence of the

moment on the components of the tensor of angular velocity). Moreover, h2 = h3 = h4 due to the
dynamical symmetry of the body.

In this case, the functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in the sys-

tem (8.39)–(8.44) have the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα− h

v
z3,

Δv

(
α, β1, β2,

Ω

v

)
=

h

v
z2,

Θv

(
α, β1, β2,

Ω

v

)
= −h

v
z1.

(10.6)

Then, due to the nonintegrable constraint (8.19), outside the manifold (8.38) the dynamical part of
the equations of motion (system (8.39)–(8.44)) takes the form of the analytic system

α̇ = −
(
1 +

σBh

2I2

)
z3 +

σABv

2I2
sinα, (10.7)

ż3 =
ABv2

2I2
sinα cosα−

(
1 +

σBh

2I2

)(
z21 + z22

) cosα
sinα

− Bhv

2I2
z3 cosα, (10.8)

ż2 =

(
1 +

σBh

2I2

)
z2z3

cosα

sinα
+

(
1 +

σBh

2I2

)
z21

cosα

sinα

cosβ1
sinβ1

− Bhv

2I2
z2 cosα, (10.9)

ż1 =

(
1 +

σBh

2I2

)
z1z3

cosα

sinα
−
(
1 +

σBh

2I2

)
z1z2

cosα

sinα

cos β1
sin β1

− Bhv

2I2
z1 cosα, (10.10)

β̇1 =

(
1 +

σBh

2I2

)
z2

cosα

sinα
, (10.11)

β̇2 = −
(
1 +

σBh

2I2

)
z1

cosα

sinα sin β1
. (10.12)

Introducing dimensionless variables and parameters and a new differentiation as follows:

zk 	→ n0vzk, k = 1, 2, 3, n2
0 =

AB

2I2
, b = σn0, H1 =

Bh

2I2n0
, 〈˙〉 = n0v〈 ′〉, (10.13)
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we reduce system (10.7)–(10.12) to the form

α̇ = − (1 + bH1) z3 + b sinα, (10.14)

ż3 = sinα cosα− (1 + bH1)
(
z21 + z22

) cosα
sinα

−H1z3 cosα, (10.15)

ż2 = (1 + bH1) z2z3
cosα

sinα
+ (1 + bH1) z

2
1

cosα

sinα

cos β1
sin β1

−H1z2 cosα, (10.16)

ż1 = (1 + bH1) z1z3
cosα

sinα
− (1 + bH1) z1z2

cosα

sinα

cos β1
sin β1

−H1z1 cosα, (10.17)

β̇1 = (1 + bH1) z2
cosα

sinα
, (10.18)

β̇2 = − (1 + bH1) z1
cosα

sinα sin β1
. (10.19)

We see that the sixth-order system (10.14)–(10.19) (which can be considered on the tangent bundle
TS3 of the three-dimensional sphere S3), contains an independent fifth-order system (10.14)–(10.18)
on its own five-dimensional manifold.

For complete integration of system (10.14)–(10.19), we need, in general, five independent first
integrals. However, after the change of variables

(
z1
z2

)
→

(
z
z∗

)
, z =

√
z21 + z22 , z∗ = z2/z1, (10.20)

system (10.14)–(10.19) splits as follows:

α′ = −(1 + bH1)z3 + b sinα, (10.21)

z′3 = sinα cosα− (1 + bH1)z
2 cosα

sinα
−H1z3 cosα, (10.22)

z′ = (1 + bH1)zz3
cosα

sinα
−H1z cosα, (10.23)

z′∗ = (±)(1 + bH1)z
√

1 + z2∗
cosα

sinα

cos β1
sin β1

, (10.24)

β′
1 = (±)(1 + bH1)

zz∗√
1 + z2∗

cosα

sinα
, (10.25)

β′
2 = (∓)(1 + bH1)

z√
1 + z2∗

cosα

sinα sin β1
. (10.26)

We see that the sixth-order system splits into independent subsystems of lower orders: sys-

tem (10.21)–(10.23) of order 3 and system (10.24), (10.25) (certainly, after a choice of the independent
variables) of order 2. Thus, to integrate system (10.21)–(10.26) completely, it suffices to find two
independent first integrals of system (10.21)–(10.23), one first integral of system (10.24), (10.25), and

an additional first integral that “attaches” Eq. (10.26).
Note that system (10.21)–(10.23) can be considered on the tangent bundle TS2 of the two-

dimensional sphere S2.

10.3. Complete list of invariant relation. System (10.21)–(10.23) has the form of a system of
equations that appears in the dynamics of a three-dimensional (3D) rigid body in a nonconservative

field.
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First, we establish a correspondence between the third-order system (10.21)–(10.23) and the nonau-

tonomous second-order system

dz3
dα

=
sinα cosα− (1 + bH1)z

2 cosα/ sinα−H1z3 cosα

−(1 + bH1)z3 + b sinα
,

dz

dα
=

(1 + bH1)zz3 cosα/ sinα−H1z cosα

−(1 + bH1)z3 + b sinα
.

(10.27)

Using the substitution τ = sinα, we rewrite system (10.27) in the algebraic form:

dz3
dτ

=
τ − (1 + bH1)z

2/τ −H1z3
−(1 + bH1)z3 + bτ

,

dz

dτ
=

(1 + bH1)zz3/τ −H1z

−(1 + bH1)z3 + bτ
.

(10.28)

Further, introducing homogeneous variables by the formulas

z = u1τ, z3 = u2τ, (10.29)

we reduce system (10.28) to the following form:

τ
du2
dτ

+ u2 =
1− (1 + bH1)u

2
1 −H1u2

−(1 + bH1)u2 + b
,

τ
du1
dτ

+ u1 =
(1 + bH1)u1u2 −H1u1

−(1 + bH1)u2 + b
,

(10.30)

which is equivalent to

τ
du2
dτ

=
(1 + bH1)

(
u22 − u21

)− (b+H1)u2 + 1

−(1 + bH1)u2 + b
,

τ
du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−(1 + bH1)u2 + b
.

(10.31)

We establish a correspondence between the second-order system (10.31) and the nonautonomous
first-order equation

du2
du1

=
1− (1 + bH1)

(
u21 − u22

)− (b+H1)u2

2(1 + bH1)u1u2 − (b+H1)u1
, (10.32)

which can be easily reduced to exact-differential form:

d

(
(1 + bH1)

(
u22 + u21

)− (b+H1)u2 + 1

u1

)
= 0. (10.33)

Thus, Eq. (10.32) has the following first integral:

(1 + bH1)
(
u22 + u21

)− (b+H1)u2 + 1

u1
= C1 = const, (10.34)

which in the original variables has the form

(1 + bH1)
(
z23 + z2

)− (b+H1)z3 sinα+ sin2 α

z sinα
= C1 = const . (10.35)
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Remark 10.1. Consider system (10.21)–(10.23) with variable dissipation with zero mean (see [91]),

which becomes conservative for b = H1:

α′ = − (
1 + b2

)
z3 + b sinα,

z′3 = sinα cosα− (
1 + b2

)
z2

cosα

sinα
− bz3 cosα,

z′ =
(
1 + b2

)
zz3

cosα

sinα
− bz cosα.

(10.36)

It possesses the following two analytic first integrals:(
1 + b2

) (
z23 + z2

)− 2bz3 sinα+ sin2 α = C∗
1 = const, (10.37)

z sinα = C∗
2 = const . (10.38)

Obviously, the ratio of the two first integrals (10.37) and (10.38) is also a first integral of system (10.36).

However, for b �= H1, none of the functions

(1 + bH1)
(
z23 + z2

)− (b+H1)z3 sinα+ sin2 α (10.39)

and (10.38) is a first integral of system (10.21)–(10.23), but their ratio is a first integral of sys-
tem (10.21)–(10.23) for any b and H1.

We find the explicit form of the additional first integral of the third-order system (10.21)–(10.23).

First, we transform the invariant relation (10.34) for u1 �= 0 as follows:(
u2 − b+H1

2(1 + bH1)

)2

+

(
u1 − C1

2(1 + bH1)

)2

=
(b−H1)

2 + C2
1 − 4

4(1 + bH1)2
. (10.40)

We see that the parameters of this invariant relation must satisfy the condition

(b−H1)
2 +C2

1 − 4 ≥ 0, (10.41)

and the phase space of system (10.21)–(10.23) is stratified into the family of surfaces defined by
Eq. (10.40).

Thus, due to relation (10.34), the first equation of system (10.31) has the form

τ
du2
dτ

=
2(1 + bH1)u

2
2 − 2(b+H1)u2 + 2− C1U1(C1, u2)

b− (1 + bH1)u2
, (10.42)

where

U1(C1, u2) =
1

2(1 + bH1)
{C1 ± U2(C1, u2)},

U2(C1, u2) =
√

C2
1 − 4(1 + bH1)

(
1− (b+H1)u2 + (1 + bH1)u

2
2

)
,

and the integration constant C1 is defined by condition (10.41).

Therefore, the quadrature for the search for an additional first integral of system (10.21)–(10.23)
becomes∫

dτ

τ
=

∫
(b− (1 + bH1)u2)du2

2(1 − (b+H1)u2 + (1 + bH1)u22)− C1{C1 ± U2(C1, u2)}/(2(1 + bH1))
. (10.43)

Obviously, the left-hand side (up to an additive constant) is equal to

ln | sinα|. (10.44)

If

u2 − b+H1

2(1 + bH1)
= w1, b21 = (b−H1)

2 + C2
1 − 4, (10.45)

then the right-hand side of Eq. (10.43) becomes
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− 1

4

∫
d
(
b21 − 4(1 + bH1)w

2
1

)
(
b21 − 4(1 + bH1)w2

1

)± C1

√
b21 − 4(1 + bH1)w2

1

− (b−H1)(1 + bH1)

∫
dw1(

b21 − 4(1 + bH1)w2
1

)± C1

√
b21 − 4(1 + bH1)w2

1

= −1

2
ln

∣∣∣∣∣
√

b21 − 4(1 + bH1)w2
1

C1
± 1

∣∣∣∣∣±
b−H1

2
I1, (10.46)

where

I1 =

∫
dw3√

b21 −w2
3(w3 ±C1)

, w3 =
√

b21 − 4(1 + bH1)w
2
1. (10.47)

In the calculation of the integral (10.47), the following three cases are possible:

I. |b−H1| > 2:

I1 = − 1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4 +
√

b21 − w2
3

w3 ± C1
± C1√

(b−H1)2 − 4

∣∣∣∣∣
+

1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4−
√

b21 − w2
3

w3 ± C1
∓ C1√

(b−H1)2 − 4

∣∣∣∣∣+ const; (10.48)

II. |b−H1| < 2:

I1 =
1√

4− (b−H1)2
arcsin

±C1w3 + b21
b1(w3 ± C1)

+ const; (10.49)

III. |b−H1| = 2:

I1 = ∓
√

b21 − w2
3

C1(w3 ± C1)
+ const . (10.50)

Returning to the variable

w1 =
z2

sinα
− b+H1

2(1 + bH1)
, (10.51)

we have the following final form of I1:

I. |b−H1| > 2:

I1 = − 1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4± 2(1 + bH1)w1√
b21 − 4(1 + bH1)2w2

1 ± C1

± C1√
(b−H1)2 − 4

∣∣∣∣∣
+

1

2
√

(b−H1)2 − 4
ln

∣∣∣∣∣
√

(b−H1)2 − 4∓ 2(1 + bH1)w1√
b21 − 4(1 + bH1)2w2

1 ± C1

∓ C1√
(b−H1)2 − 4

∣∣∣∣∣+ const; (10.52)

II. |b−H1| < 2:

I1 =
1√

4− (b−H1)2
arcsin

±C1

√
b21 − 4(1 + bH1)2w2

1 + b21

b1

(√
b21 − 4(1 + bH1)2w2

1 ± C1

) + const; (10.53)

III. |b−H1| = 2:

I1 = ∓ 2(1 + bH1)w1

C1

(√
b21 − 4(1 + bH1)2w2

1 ± C1

) + const . (10.54)

Thus, we have found an additional first integral for the third-order system (10.21)–(10.23) and we

have the complete set of first integrals that are transcendental functions of their phase variables.
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Remark 10.2. Formally, in the expression of the first integral found, we must substitute for C1 the

left-hand side of the first integral (10.34).
Then the obtained additional first integral has the following structure (similar to the transcendental

first integral from planar dynamics):

ln | sinα|+G2

(
sinα,

z3
sinα

,
z

sinα

)
= C2 = const . (10.55)

Thus, to integrate the sixth-order system (10.21)–(10.26), we have already found two independent
first integrals. As was mentioned above, to integrate it completely, it suffices to find one first integral

for the (potentially separated) system (10.24), (10.25) and an additional first integral that “attaches”
Eq. (10.26).

To find a first integral of the (potentially separated) system (10.24), (10.25), we establish a corre-

spondence between it and the following nonautonomous first-order equation:

dz∗
dβ1

=
1 + z2∗
z∗

cos β1
sin β1

. (10.56)

After integration we obtain the required invariant relation√
1 + z2∗
sin β1

= C3 = const, (10.57)

which in terms of the variables z1 and z2 has the form√
z21 + z22

z1 sin β1
= C3 = const . (10.58)

Further, to obtain an additional first integral that “attaches” Eq. (10.26), we establish a correspon-
dence between Eqs. (10.26) and (10.24) and the following nonautonomous equation:

dz∗
dβ2

= − (
1 + z2∗

)
cos β1. (10.59)

Since

C3 cos β1 = ±
√

C2
3 − 1− z2∗ (10.60)

by (10.57), we have
dz∗
dβ2

= ∓ 1

C3

(
1 + z2∗

)√
C2
3 − 1− z2∗ . (10.61)

Integrating this relation, we arrive at the following quadrature:

∓(β2 + C4) =

∫
C3dz∗

(1 + z2∗)
√
C2
3 − 1− z2∗

, C4 = const . (10.62)

Integration leads to the relation

∓ tan(β2 + C4) =
C3z∗√

C2
3 − 1− z2∗

, C4 = const . (10.63)

Expressed in terms of the variables z1 and z2 this invariant relation has the form

∓ tan(β2 + C4) =
C3z2√(

C2
3 − 1

)
z21 − z22

, C4 = const . (10.64)

Finally, we have the following additional first integral that “attaches” Eq. (10.26):

arctan
C3z∗√

C2
3 − 1− z2∗

± β2 = C4, C4 = const (10.65)
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or

arctan
C3z2√(

C2
3 − 1

)
z21 − z22

± β2 = C4, C4 = const . (10.66)

Thus, in the case considered, the system of dynamical equations (8.3)–(8.6), (8.9)–(8.14) under
condition (10.5) has eight invariant relations: the analytic nonintegrable constraint of the form (8.19),
the cyclic first integrals of the form (8.17) and (8.18), the first integral of the form (10.35), the

first integral expressed by relations (10.48)–(10.55), which is a transcendental function of the phase
variables (in the sense of complex analysis) expressed through a finite combination of functions, and
the transcendental first integrals of the form (10.57) (or (10.58)) and (10.65) (or (10.66)).

Theorem 10.1. System (8.3)–(8.6), (8.9)–(8.14) under conditions (8.19), (10.5), and (8.18) pos-

sesses eight invariant relations (complete set); four of them are transcendental functions from the
point of view of complex analysis. All the relations are expressed through finite combinations of ele-
mentary functions.

10.4. Topological analogies. Consider the following fifth-order system:

ξ̈ + (b∗ −H1∗)ξ̇ cos ξ + sin ξ cos ξ − [
η̇1

2 + η̇2
2 sin2 η1

] sin ξ
cos ξ

= 0,

η̈1 + (b∗ −H1∗)η̇1 cos ξ + ξ̇η̇1
1 + cos2 ξ

cos ξ sin ξ
− η̇2

2 sin η1 cos η1 = 0,

η̈2 + (b∗ −H1∗)η̇2 cos ξ + ξ̇η̇2
1 + cos2 ξ

cos ξ sin ξ
+ 2η̇1η̇2

cos η1
cos η1

= 0,

(10.67)

where b∗ > 0 and H1∗ > 0. This system describes a fixed four-dimensional pendulum in a flow of a

running medium for which the moment of forces depends on the angular velocity, i.e., a mechanical
system in a nonconservative field (see [14, 15, 150]). Generally speaking, the order of this system must
be equal to 6, but the phase variable η2 is a cyclic variable, which leads to the stratification of the

phase space and reduces the order of the system.
The phase space of this system is the tangent bundle

TS3
{
ξ̇, η̇1, η̇2, ξ, η1, η2

}
(10.68)

of the three-dimensional sphere S3{ξ, η1, η2}. The equation that transforms system (9.64) into a
system on the tangent bundle of the two-dimensional sphere

η̇2 ≡ 0 (10.69)

and the equations of great circles

η̇1 ≡ 0, η̇2 ≡ 0 (10.70)

define families of integral manifolds.
It is easy to verify that system (10.67) is equivalent to a dynamical system with variable dissipation

with zero mean on the tangent bundle (10.68) of the three-dimensional sphere. Moreover, the following
theorem holds.

Theorem 10.2. System (8.3)–(8.6), (8.9)–(8.14) under conditions (8.19), (10.5), and (8.18) is equiv-
alent to the dynamical system (10.67).

Proof. Indeed, it suffices to set α = ξ, β1 = η1, β2 = η2, b = −b∗, and H1 = −H1∗.

On more general topological analogies, see [91].
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Chapter 3

CASES OF INTEGRABILITY

CORRESPONDING TO THE MOTION OF A RIGID BODY

IN FOUR-DIMENSIONAL SPACE, II

In this chapter, we systematize results, both new results and results obtained earlier, concerning the

study of the equations of motion of an axisymmetric four-dimensional (4D) rigid body in a field of
nonconservative forces. These equations are taken from the dynamics of realistic rigid bodies of lesser
dimension that interact with a resisting medium by laws of jet flow when the body is subjected to a

nonconservative tracing force such that throughout the motion the center of mass of the body moves
rectilinearly and uniformly; this means that in the system there exists a nonconservative couple of
forces (see [5, 31, 36, 46, 53, 71, 77, 81, 88, 139, 152]).

Earlier, in [42, 81] the author proved the complete integrability of the equations of plane-parallel
motion of a body in a resisting medium under the conditions of jet flow in the case where the system
of dynamical equations possesses a first integral which is a transcendental (in the sense of the theory

of functions of a complex variable) function of quasi-velocities. It was assumed that the interaction of
the body with the medium is concentrated on a part of the surface of the body that has the form of
a (one-dimensional) plate.

Subsequently (see [76, 77, 95]), the planar problem was generalized to the spatial (three-dimensional)
case, where the system of dynamical equations possesses a complete set of transcendental first integrals.
In this case, it was assumed that the interaction of the medium with the body is concentrated on a

part of the surface of the body that has the form of a planar (two-dimensional) disk.
In this chapter, we discuss results, both new results and results obtained earlier, concerning the

case where the interaction of the medium with the body is concentrated on a part of the surface of the

body that has the form of a three-dimensional disk and the force acts in the direction perpendicular
to the disk. We systematize these results and formulate them in invariant form. We also introduce
an additional dependence of the moment of a nonconservative force on the angular velocity; this

dependence can be generalized to motion in higher-dimensional spaces.

11. General Problem of Motion Under a Tracing Force

Consider the motion of a homogeneous, dynamically symmetric (case (7.1)), rigid body with “front
end face” (a three-dimensional disk interacting with a medium that fills four-dimensional space) in
the field of a resistance force S under quasi-stationarity conditions (see [16, 17, 30, 35, 36, 42, 43, 89,
108, 126, 145, 152].

Let (v, α, β1, β2) be the (generalized) spherical coordinates of the velocity vector of the center D of
the three-dimensional disk lying on the axis of symmetry of the body, let

Ω =

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

be the tensor of angular velocity of the body, and let Dx1x2x3x4 be the coordinate system attached to
the body such that the axis of symmetry CD coincides with the axis Dx1 (recall that C is the center
of mass), the axes Dx2, Dx3, and Dx4 lie in the hyperplane of the disk, while I1, I2, I3 = I2, I4 = I2,

and m are the characteristics of inertia and mass.
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We adopt the following expansions in projections onto the axes of the coordinate systemDx1x2x3x4:

DC = {−σ, 0, 0, 0},
vD =

{
v cosα, v sinα cos β1, v sinα sinβ1 cos β2, v sinα sinβ1 sin β2

}
.

(11.1)

In the case (7.1) we additionally have an expansion for the function of the influence of the medium

on the four-dimensional body:

S = {−S, 0, 0, 0} (11.2)

i.e., in this case F = S.
Then the set of dynamical equations of motion of the body (including the Chaplygin analytic

functions, [16, 17], see below) that describes the motion of the center of mass and corresponds to the
space R

4, in which the tangent forces of the influence of the medium on the three-dimensional disk
vanish, takes the form

v̇ cosα− α̇v sinα− ω6v sinα cos β1 + ω5v sinα sin β1 cos β2 − ω3v sinα sin β1 sinβ2

+σ
(
ω2
6 + ω2

5 + ω2
3

)
= − S

m
,

(11.3)

v̇ sinα cos β1 + α̇v cosα cos β1 − β̇1v sinα sin β1 + ω6v cosα− ω4v sinα sin β1 cosβ2

+ω2v sinα sin β1 sin β2 − σ(ω4ω5 + ω2ω3)− σω̇6 = 0,
(11.4)

v̇ sinα sin β1 cos β2 + α̇v cosα sin β1 cos β2 + β̇1v sinα cosβ1 cos β2 − β̇2v sinα sin β1 sin β2

−ω5v cosα+ ω4v sinα cos β1 − ω1v sinα sin β1 sinβ2 − σ(−ω1ω2 + ω4ω6) + σω̇5 = 0,
(11.5)

v̇ sinα sin β1 sin β2 + α̇v cosα sin β1 sin β2 + β̇1v sinα cosβ1 sin β2 + β̇2v sinα sin β1 cos β2

+ω3v cosα− ω2v sinα cosβ1 + ω1v sinα sin β1 cos β2 + σ(ω2ω6 + ω1ω5)− σω̇3 = 0,
(11.6)

where

S = s(α)v2, σ = CD, v > 0. (11.7)

Further, the auxiliary matrix (7.11) for the calculation of the moment of the resistance force takes

the form (
0 x2N x3N x4N
−S 0 0 0

)
; (11.8)

then the set of dynamical equations that describes the motion of the body about the center of mass
and corresponds to the Lie algebra so(4) takes the form

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0, (11.9)

(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) = 0, (11.10)

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) = x4N

(
α, β1, β2,

Ω

v

)
s(α)v2, (11.11)

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) = 0, (11.12)

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) = −x3N

(
α, β1, β2,

Ω

v

)
s(α)v2, (11.13)

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = x2N

(
α, β1, β2,

Ω

v

)
s(α)v2. (11.14)
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Thus, the phase space of the tenth-order system (11.3)–(11.6), (11.9)–(11.14) is the direct product

of the four-dimensional manifold and the Lie algebra so(4):

R
1 × S3 × so(4). (11.15)

Note that system (11.3)–(11.6), (11.9)–(11.14), due to the existing dynamical symmetry

I2 = I3 = I4, (11.16)

possesses the cyclic first integrals

ω1 ≡ ω0
1 = const, ω2 ≡ ω0

2 = const, ω4 ≡ ω0
4 = const . (11.17)

Henceforth, we will consider the dynamics of the system on zero levels:

ω0
1 = ω0

2 = ω0
4 = 0. (11.18)

If we consider a more general problem on the motion of a body under a tracing force T lying on
the straight line CD = Dx1 that assumes that throughout the motion the condition

VC ≡ const (11.19)

(here VC is the velocity of the center of mass, see also [91]) is satisfied, then system (11.3)–(11.6),
(11.9)–(11.14) contains zero instead of Fx, since a nonconservative couple of forces acts on the body:

T − s(α)v2 ≡ 0, σ = DC. (11.20)

For this purpose, obviously, we must select the value of the tracing force T in the form

T = Tv(α,Ω) = s(α)v2, T ≡ −S. (11.21)

The case (11.21) of the choice of the value T of the tracing force is a particular case of the separation
of an independent fifth-order subsystem after a certain transformation of the sixth-order system (11.3)–
(11.6), (11.9)–(11.14).

Indeed, let the following condition for T hold:

T = Tv(α, β1, β2,Ω) =

4∑
i,j=0,
i≤j

τi,j

(
α, β1, β2,

Ω

v

)
ΩiΩj = T1

(
α, β1, β2,

Ω

v

)
v2, Ω0 = v. (11.22)

We introduce new quasi-velocities into the system. For this purpose, we transform ω3, ω5, and ω6

by a composition of two rotations:⎛
⎝z1
z2
z3

⎞
⎠ = T1(−β1) ◦T3(−β2)

⎛
⎝ω3

ω5

ω6

⎞
⎠ , (11.23)

where

T1(β1) =

⎛
⎝1 0 0

0 cos β1 − sinβ1
0 sin β1 cos β1

⎞
⎠ , T3(β2) =

⎛
⎝cosβ2 − sin β2 0

sinβ2 cos β2 0
0 0 1

⎞
⎠ . (11.24)

Thus, the following relations hold:

z1 = ω3 cos β2 + ω5 sin β2,

z2 = −ω3 cos β1 sinβ2 + ω5 cos β1 cos β2 + ω6 sin β1,

z3 = ω3 sin β1 sin β2 − ω5 sinβ1 cos β2 + ω6 cos β1.

(11.25)
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System (11.3)–(11.6), (11.9)–(11.14) in the cases (11.16)–(11.18) and (11.22) can be rewritten in

the form

v̇ + σ
(
z21 + z22 + z23

)
cosα− σ

v2

2I2
s(α) sinα · Γv

(
α, β1, β2,

Ω

v

)

=
T1

(
α, β1, β2,

Ω
v

)
v2 − s(α)v2

m
cosα,

(11.26)

α̇v + z3v − σ
(
z21 + z22 + z23

)
sinα− σ

v2

2I2
s(α) cosα · Γv

(
α, β1, β2,

Ω

v

)

=
s(α)v2 − T1

(
α, β1, β2,

Ω
v

)
v2

m
sinα,

(11.27)

β̇1 sinα− z2 cosα− σv

2I2
s(α) ·Δv

(
α, β1, β2,

Ω

v

)
= 0, (11.28)

β̇2 sinα sin β1 + z1 cosα− σv

2I2
s(α) ·Θv

(
α, β1, β2,

Ω

v

)
= 0, (11.29)

ω̇3 =
v2

2I2
x4N

(
α, β1, β2,

Ω

v

)
s(α), (11.30)

ω̇5 = − v2

2I2
x3N

(
α, β1, β2,

Ω

v

)
s(α), (11.31)

ω̇6 =
v2

2I2
x2N

(
α, β1, β2,

Ω

v

)
s(α). (11.32)

Introducing new dimensionless phase variables and a new differentiation by the formulas

zk = n1vZk, k = 1, 2, 3, 〈˙〉 = n1v〈 ′〉, n1 > 0, n1 = const, (11.33)

we reduce system (11.26)–(11.32) to the following form:

v′ = vΨ(α, β1, β2, Z), (11.34)

α′ = −Z3 + σn1

(
Z2
1 + Z2

2 + Z2
3

)
sinα+

σ

2I2n1
s(α) cosα · Γv (α, β1, β2, n1Z)

− T1 (α, β1, β2, n1Z)− s(α)

mn1
sinα,

(11.35)

Z ′
3 =

s(α)

2I2n2
1

· Γv (α, β1, β2, n1Z)− (
Z2
1 + Z2

2

) cosα
sinα

− σ

2I2n1
Z2

s(α)

sinα
·Δv (α, β1, β2, n1Z) +

σ

2I2n1
Z1

s(α)

sinα
·Θv (α, β1, β2, n1Z)

− Z3 ·Ψ(α, β1, β2, Z) ,

(11.36)
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Z ′
2 = − s(α)

2I2n2
1

·Δv (α, β1, β2, n1Z) + Z2Z3
cosα

sinα
+ Z2

1

cosα

sinα

cos β1
sin β1

+
σ

2I2n1
Z3

s(α)

sinα
·Δv (α, β1, β2, n1Z)− σ

2I2n1
Z1

s(α)

sinα
·Θv (α, β1, β2, n1Z)

− Z2 ·Ψ(α, β1, β2, Z) ,

(11.37)

Z ′
1 =

s(α)

2I2n
2
1

·Θv (α, β1, β2, n1Z) + Z1Z3
cosα

sinα
− Z1Z2

cosα

sinα

cos β1
sin β1

− σ

2I2n1

s(α)

sinα sin β1
·Θv (α, β1, β2, n1Z) · [Z3 sin β1 − Z2 cosβ1

]

− Z1 ·Ψ(α, β1, β2, Z) ,

(11.38)

β′
1 = Z2

cosα

sinα
+

σ

2I2n1

s(α)

sinα
·Δv (α, β1, β2, n1Z) , (11.39)

β′
2 = −Z1

cosα

sinα sin β1
+

σ

2I2n1

s(α)

sinα sin β1
·Θv (α, β1, β2, n1Z) , (11.40)

where

Ψ(α, β1, β2, Z) = −σn1

(
Z2
1 + Z2

2 + Z2
3

)
cosα+

σ

2I2n1
s(α) sinα · Γv (α, β1, β2, n1Z)

+
T1 (α, β1, β2, n1Z)− s(α)

mn1
cosα,

(11.41)

Γv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
sin β1 sinβ2 + x3N

(
α, β1, β2,

Ω

v

)
sin β1 cos β2

+ x2N

(
α, β1, β2,

Ω

v

)
cos β1,

(11.42)

Δv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β1 sin β2 + x3N

(
α, β1, β2,

Ω

v

)
cos β1 cos β2

− x2N

(
α, β1, β2,

Ω

v

)
sin β1,

(11.43)

Θv

(
α, β1, β2,

Ω

v

)
= x4N

(
α, β1, β2,

Ω

v

)
cos β2 − x3N

(
α, β1, β2,

Ω

v

)
sin β2. (11.44)

We see that the seventh-order system (11.34)–(11.40) contains an independent sixth-order subsys-
tem (11.35)–(11.40), which can be separately examined in its own six-dimensional phase space.

In particular, this method of separation of an independent sixth-order subsystem can also be applied
under condition (11.21).

Here and in what follows, the dependence on the group of variables (α, β1, β2,Ω/v) is meant as a

composite dependence on (α, β1, β2, z1/v, z2/v, z3/v) (and further of (α, β1, β2, n1Z1, n1Z2, n1Z3)) due
to (11.25) and (11.33).
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12. Case Where the Moment of a Nonconservative Force

Is Independent of the Angular Velocity

12.1. Reduced system. As in the choice of Chaplygin analytic functions (see [16, 17]), we select
the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα,

x2N

(
α, β1, β2,

Ω

v

)
= x2N0(α, β1, β2) = A sinα cos β1,

x3N

(
α, β1, β2,

Ω

v

)
= x3N0(α, β1) = A sinα sinβ1 cos β2,

x4N

(
α, β1, β2,

Ω

v

)
= x4N0(α, β1, β2) = A sinα sin β1 sinβ2,

(12.1)

where A,B > 0 and v �= 0. We see that in the system considered, the moment of nonconservative
forces is independent of the angular velocity and depends only on the angles α, β1, and β2. The

functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in system (11.34)–(11.40) have
the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα, Δv

(
α, β1, β2,

Ω

v

)
≡ Θv

(
α, β1, β2,

Ω

v

)
≡ 0. (12.2)

Then, due to conditions (11.19) and (12.1), the transformed dynamical part of the equations of

motion (system (11.34)–(11.40)) becomes the analytic system

v′ = vΨ(α, β1, β2, Z), (12.3)

α′ = −Z3 + b
(
Z2
1 + Z2

2 + Z2
3

)
sinα+ b sinα cos2 α, (12.4)

Z ′
3 = sinα cosα− (

Z2
1 + Z2

2

) cosα
sinα

+ bZ3

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ3 sin

2 α cosα, (12.5)

Z ′
2 = Z2Z3

cosα

sinα
+ Z2

1

cosα

sinα

cos β1
sin β1

+ bZ2

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ2 sin

2 α cosα, (12.6)

Z ′
1 = Z1Z3

cosα

sinα
− Z1Z2

cosα

sinα

cos β1
sin β1

+ bZ1

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ1 sin

2 α cosα, (12.7)

β′
1 = Z2

cosα

sinα
, (12.8)

β′
2 = −Z1

cosα

sinα sin β1
, (12.9)

where

Ψ(α, β1, β2, Z) = −b
(
Z2
1 + Z2

2 + Z2
3

)
cosα+ b sin2 α cosα

and the dimensionless parameter b and the constant n1 are chosen as follows:

b = σn0, n2
0 =

AB

2I2
, n1 = n0. (12.10)

Thus, system (12.3)–(12.9) can be considered on its own seven-dimensional phase manifold

W1 = R
1
+{v} × TS3

{
Z1, Z2, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
, (12.11)

i.e., on the direct product of the number half-line and the tangent bundle of the three-dimensional
sphere S3

{
0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
.

We see that the seven-dimensional system (12.3)–(12.9) contains the independent sixth-order sys-

tem (12.4)–(12.9) on its own six-dimensional manifold.
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For the complete integration of system (12.3)–(12.9) we need, in general, six independent first

integrals. However, after the change of variables(
Z1

Z2

)
→

(
Z
Z∗

)
, Z =

√
Z2
1 + Z2

2 , Z∗ = Z2/Z1, (12.12)

system (12.4)–(12.9) splits as follows:

α′ = −Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α, (12.13)

Z ′
3 = sinα cosα− Z2 cosα

sinα
+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα, (12.14)

Z ′ = ZZ3
cosα

sinα
+ bZ

(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα, (12.15)

Z ′
∗ = (±)Z

√
1 + Z2∗

cosα

sinα

cos β1
sin β1

, (12.16)

β′
1 = (±)

ZZ∗√
1 + Z2∗

cosα

sinα
, (12.17)

β′
2 = (∓)

Z√
1 + Z2∗

cosα

sinα sin β1
. (12.18)

We see that the sixth-order system also splits into independent subsystems of lower orders: sys-
tem (12.13)–(12.15) of order 3 and system (12.16), (12.17) (after the change of the independent
variable) of order 2. Thus, for the complete integrability of system (12.3), (12.13)–(12.18) it suf-

fices to specify two independent first integrals of system (12.13)–(12.15), one first integral of sys-
tem (12.16), (12.17), and two additional first integrals that “attach” Eqs. (12.18) and (12.3).

Note that system (12.13)–(12.15) can be considered on the tangent bundle TS2 of the two-

dimensional sphere S2.

12.2. Complete list of first integrals. System (12.13)–(12.15) has the form of a system that
appears in the dynamics of a three-dimensional (3D) rigid body in a nonconservative field.

Note that, by (11.19), the value of the velocity of the center of mass is a first integral of sys-
tem (11.26)–(11.32) (under condition (11.21)); namely, the function of phase variables

Ψ0(v, α, β1, β2, z1, z2, z3) = v2 + σ2
(
z21 + z22 + z23

)− 2σz3v sinα = V 2
C (12.19)

is constant on phase trajectories of the system (here z1, z2, and z3 are chosen due to (11.25)).
Due to a nondegenerate change of the independent variable (for v �= 0), system (12.3), (12.13)–

(12.18) also possesses an analytic integral, namely, the function of phase variables

Ψ1(v, α, β1, β2, Z, Z∗, Z3) = v2
(
1 + b2

(
Z2 + Z2

3

)− 2bZ3 sinα
)
= V 2

C (12.20)

is constant on phase trajectories of the system.
Equality (12.20) allows one to find the dependence of the velocity of the characteristic point

of the rigid body (the center D of the disk) on the other phase variables without solving sys-

tem (12.3), (12.13)–(12.18); namely, for VC �= 0 we have the relation

v2 =
V 2
C

1 + b2
(
Z2 + Z2

3

)− 2bZ3 sinα
. (12.21)

Since the phase space

W2 = R
1
+{v} × TS3

{
Z, Z∗, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
(12.22)
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of system (12.3), (12.13)–(12.18) has dimension 7 and contains asymptotic limit sets, Eq. (12.20)

defines a unique analytic (even continuous) first integral of system (12.3), (12.13)–(12.18) in the whole
phase space (see [3, 4, 8, 11, 38, 39, 56, 69, 91]).

We examine the existence of other (additional) first integrals of system (12.3), (12.13)–(12.18). Its
phase space is stratified into surfaces{

(v, α, β1, β2, Z, Z∗, Z3) ∈ W2 : VC = const
}
; (12.23)

the dynamics on these surfaces is determined by the first integrals of system (12.3), (12.13)–(12.18).
First, we establish a correspondence between the independent third-order subsystem (12.13)–(12.15)

and the nonautonomous second-order system

dZ3

dα
=

sinα cosα+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα− Z2 cosα/ sinα

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α

,

dZ

dα
=

bZ
(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα+ ZZ3 cosα/ sinα

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α

.

(12.24)

Applying the substitution τ = sinα, we rewrite system (12.24) in algebraic form:

dZ3

dτ
=

τ + bZ3

(
Z2 + Z2

3

)− bZ3τ
2 − Z2/τ

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

) ,

dZ

dτ
=

bZ
(
Z2 + Z2

3

)− bZτ2 + ZZ3/τ

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

) .
(12.25)

Further, introducing the homogeneous variables by the formulas

Z = u1τ, Z3 = u2τ, (12.26)

we reduce system (12.25)) to the following form:

τ
du2
dτ

+ u2 =
1− bu2τ

2 + bu2
(
u21 + u22

)
τ2 − u21

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

,

τ
du1
dτ

+ u1 =
bu1

(
u21 + u22

)
τ2 − bu1τ

2 + u1u2

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

,

(12.27)

which is equivalent to

τ
du2
dτ

=
1− bu2 + u22 − u21

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

,

τ
du1
dτ

=
2u1u2 − bu1

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)

.

(12.28)

We establish a correspondence between the second-order system (12.28) and the nonautonomous
first-order equation

du2
du1

=
1− bu2 + u22 − u21

2u1u2 − bu1
, (12.29)

which is easily transformed to exact-differential form:

d

(
u22 + u21 − bu2 + 1

u1

)
= 0. (12.30)

Thus, Eq. (12.29) has the first integral

u22 + u21 − bu2 + 1

u1
= C1 = const, (12.31)
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which in terms of the previous variables has the form

Z2
3 + Z2 − bZ3 sinα+ sin2 α

Z sinα
= C1 = const . (12.32)

Remark 12.1. Consider system (12.13)–(12.15) with variable dissipation with zero mean (see [91]),
which becomes conservative for b = 0:

α′ = −Z3,

Z ′
3 = sinα cosα− Z2 cosα

sinα
,

Z ′ = ZZ3
cosα

sinα
.

(12.33)

This system possesses two analytic first integrals of the form

Z2
3 + Z2 + sin2 α = C∗

1 = const, (12.34)

Z sinα = C∗
2 = const . (12.35)

Obviously, the ratio of the two first integrals (12.34) and (12.35) is also a first integral of system (12.33).
However, for b �= 0, none of the functions

Z2
3 + Z2 − bZ3 sinα+ sin2 α (12.36)

and (12.35) is a first integral of system (12.13)–(12.15), but their ratio is a first integral system (12.13)–
(12.15) for any b.

Further, we find an additional first integral of the third-order system (12.13)–(12.15). First, we

transform the invariant relation (12.31) for u1 �= 0 as follows:
(
u2 − b

2

)2

+

(
u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (12.37)

We see that the parameters of this invariant relation must satisfy the condition

b2 + C2
1 − 4 ≥ 0, (12.38)

and the phase space of system (12.13)–(12.15) is stratified into a family of surfaces defined by (12.37).
Thus, due to relation (12.31), the first equation of system (12.28) takes the form

τ
du2
dτ

=
1− bu2 + u22 − U2

1 (C1, u2)

−u2 + b (1− τ2) + bτ2
(
U2
1 (C1, u2) + u22

) , (12.39)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4

(
u22 − bu2 + 1

)}
(12.40)

and the integration constant C1 is defined by condition (12.38), or the form of the Bernoulli equation:

dτ

du2
=

(b− u2)τ − bτ3
(
1− U2

1 (C1, u2)− u22
)

1− bu2 + u22 − U2
1 (C1, u2)

. (12.41)

Using (12.40), we can transform Eq. (12.41) into the form of a nonhomogeneous linear equation:

dp

du2
=

2(u2 − b)p + 2b
(
1− U2

1 (C1, u2)− u22
)

1− bu2 + u22 − U2
1 (C1, u2)

, p =
1

τ2
. (12.42)

This means that we can find another transcendental first integral in explicit form (i.e., in the form

of a finite combination of quadratures). Moreover, the general solution of Eq. (12.42) depends on
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an arbitrary constant C2. We omit complete calculations but note that the general solution of the

homogeneous linear equation obtained from (12.42) in the particular case b = C1 = 2 has the form

p = p0(u2) = C
[√

1− (u2 − 1)2 ± 1
]
exp

[√
1∓√

1− (u2 − 1)2

1±√
1− (u2 − 1)2

]
, C = const . (12.43)

Remark 12.2. Formally, in the expression of the first integral thus found, we must substitute for C1

the left-hand side of the first integral (12.31).

Then the obtained additional first integral has the following structure (similar to the transcendental
first integral from planar dynamics):

ln | sinα|+G2

(
sinα,

z3
sinα

,
z

sinα

)
= C2 = const . (12.44)

Thus, for integration of the sixth-order system (12.13)–(12.18) we already have two independent

first integrals. For the complete integration, it suffices to find one first integral for the (potentially
separated) system (12.16), (12.17) and an additional first integral that “attaches” Eq. (12.18).

To find a first integral of the (potentially separated) system (12.16), (12.17), we establish a corre-

spondence between it and the following nonautonomous first-order equation:

dZ∗
dβ1

=
1 + Z2∗
Z∗

cos β1
sin β1

. (12.45)

After integration we obtain the required invariant relation√
1 + Z2∗
sin β1

= C3 = const; (12.46)

in terms of the variables Z1 and Z2 it has the form√
Z2
1 + Z2

2

Z1 sin β1
= C3 = const . (12.47)

Further, to find an additional first integral that “attaches” Eq. (12.18), we establish a correspon-
dence between Eqs. (12.18) and (12.16) and the following nonautonomous equation:

dZ∗
dβ2

= − (
1 + Z2

∗
)
cos β1. (12.48)

Since, due to (12.46),

C3 cosβ1 = ±
√
C2
3 − 1− Z2∗ , (12.49)

we have
dZ∗
dβ2

= ∓ 1

C3

(
1 + Z2

∗
)√

C2
3 − 1− Z2∗ . (12.50)

Integrating this relation, we obtain the following quadrature:

∓(β2 + C4) =

∫
C3dZ∗

(1 + Z2∗ )
√
C2
3 − 1− Z2∗

, C4 = const . (12.51)

Another integration leads to the relation

∓ tan(β2 + C4) =
C3Z∗√

C2
3 − 1− Z2∗

, C4 = const . (12.52)

In the variables Z1 and Z2, this invariant relation has the form

∓ tan(β2 + C4) =
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

, C4 = const . (12.53)
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Finally, we have the following form of the additional first integral that “attaches” Eq. (12.18):

arctan
C3Z∗√

C2
3 − 1− Z2∗

± β2 = C4, C4 = const, (12.54)

or

arctan
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

± β2 = C4, C4 = const . (12.55)

Thus, in the case considered the system of dynamical equations (11.3)–(11.6), (11.9)–(11.14) under

condition (12.1) has eight invariant relations: the analytic nonintegrable constraint of the form (11.19)
corresponding to the analytic first integral (12.19), the cyclic first integrals of the form (11.17)
and (11.18), the first integral of the form (12.32). Moreover, there exists the first integral that can be

found from Eq. (12.42); it is a transcendental function of phase variables (in the sense of complex anal-
ysis). Finally, we have the transcendental first integrals of the form (12.46) (or (12.47)) and (12.54)
(or (12.55)).

Theorem 12.1. System (11.3)–(11.6), (11.9)–(11.14) under conditions (11.19), (12.1), (11.18),
and (11.17) possesses eight invariant relations (complete set), four of which are transcendental func-

tions (from the point of view of complex analysis). Moreover, seven of these eight relations are
expressed through finite combinations of elementary function.

12.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 12.2. The first integral (12.32) of system (11.3)–(11.6), (11.9)–(11.14) under condi-
tions (11.19), (12.1), (11.18), and (11.17) is constant on phase trajectories of system (9.10)–(9.15).

Proof. Indeed, the first integral (12.32) can be obtained by a change of coordinates by means of (12.31),
whereas the first integral (9.31) can be obtained by a change of coordinates by means of (9.30). But
relations (12.31) and (9.30) coincide. The theorem is proved.

Thus, we have the following topological and mechanical analogies in the sense explained above:

(1) motion of a free rigid body in a nonconservative field with a tracing force (under a nonintegrable
constraint);

(2) motion of a fixed physical pendulum in a flow of a running medium (a nonconservative field);

(3) rotation of a rigid body about the center of mass, which, in turn, moves rectilinearly and
uniformly in a nonconservative field.

For more general topological analogies, see also [91].

13. Case Where the Moment of a Nonconservative Force

Depends on the Angular Velocity

13.1. Introduction of the dependence on the angular velocity and the reduced system.
In this chapter, we continue to study the dynamics of a four-dimensional rigid body in four-dimensional

space. The present section, like the analogous section of Chap. 2, is devoted to the study of motion
in the case where the moment of forces depends on the tensor of angular velocity. Thus, we introduce
this dependence as in the previous chapter. This also allows us to introduce this dependence for

multi-dimensional bodies.
Let x = (x1N , x2N , x3N , x4N ) be the coordinates of the application point N of the nonconservative

force (influence of the medium) on the three-dimensional disk and let Q = (Q1, Q2, Q3, Q4) be the

components of the force S of the influence of the medium independent of the tensor of angular velocity.
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We consider only the linear dependence of the function (x1N , x2N , x3N , x4N ) on the tensor of angular

velocity since this introduction itself is not obvious (see [14, 15]).
We adopt the following dependence:

x = Q+R, (13.1)

where R = (R1, R2, R3, R4) is a vector-valued function containing the components of the tensor of
angular velocity. The dependence of the functions R on the components of the tensor of angular

velocity is gyroscopic:

R =

⎛
⎜⎜⎝
R1

R2

R3

R4

⎞
⎟⎟⎠ = −1

v

⎛
⎜⎜⎝

0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
h1
h2
h3
h4

⎞
⎟⎟⎠ , (13.2)

where (h1, h2, h3, h4) are some positive parameters (cf. [91]).

Since x1N ≡ 0, we have

x2N = Q2 − h1
ω6

v
, x3N = Q3 + h1

ω5

v
, x4N = Q4 − h1

ω3

v
. (13.3)

As in to the choice of the Chaplygin analytic functions (see [16, 17]),

Q2 = A sinα cos β1,

Q3 = A sinα sin β1 cosβ2,

Q4 = A sinα sin β1 sinβ2,

(13.4)

where A > 0, and we select the dynamical functions s, x2N , x3N , and x4N in the following form:

s(α) = B cosα, B > 0,

x2N

(
α, β1, β2,

Ω

v

)
= A sinα cos β1 − h

ω6

v
, h = h1 > 0, v �= 0,

x3N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 cos β2 + h

ω5

v
, h = h1 > 0, v �= 0,

x4N

(
α, β1, β2,

Ω

v

)
= A sinα sinβ1 sin β2 − h

ω3

v
, h = h1 > 0, v �= 0.

(13.5)

This shows that in this problem, there is an additional damping (but accelerating in certain domains of

the phase space) moment of a nonconservative force (i.e., there is a dependence of the moment on the
components of the tensor of angular velocity). By the dynamical symmetry of the body, h2 = h3 = h4.

The functions Γv (α, β1, β2,Ω/v), Δv (α, β1, β2,Ω/v), and Θv (α, β1, β2,Ω/v) in system (11.35)–

(11.40) have the following form:

Γv

(
α, β1, β2,

Ω

v

)
= A sinα− h

v
z3,

Δv

(
α, β1, β2,

Ω

v

)
=

h

v
z2,

Θv

(
α, β1, β2,

Ω

v

)
= −h

v
z1.

(13.6)

By conditions (11.19) and (13.5), the transformed dynamical part of the equations of motion (sys-
tem (11.34)–(11.40)) becomes the following analytic system:

v′ = vΨ(α, β1, β2, Z), (13.7)

α′ = −Z3 + b
(
Z2
1 + Z2

2 + Z2
3

)
sinα+ b sinα cos2 α− bH1Z3 cos

2 α, (13.8)
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Z ′
3 = sinα cosα− (1 + bH1)

(
Z2
1 + Z2

2

) cosα
sinα

+ bZ3

(
Z2
1 + Z2

2 + Z2
3

)
cosα− bZ3 sin

2 α cosα

+ bH1Z
2
3 sinα cosα−H1Z3 cosα,

(13.9)

Z ′
2 = (1 + bH1)Z2Z3

cosα

sinα
+ (1 + bH1)Z

2
1

cosα

sinα

cos β1
sin β1

+ bZ2

(
Z2
1 + Z2

2 + Z2
3

)
cosα

− bZ2 sin
2 α cosα+ bH1Z2Z3 sinα cosα−H1Z2 cosα,

(13.10)

Z ′
1 = (1 + bH1)Z1Z3

cosα

sinα
− (1 + bH1)Z1Z2

cosα

sinα

cos β1
sin β1

+ bZ1

(
Z2
1 + Z2

2 + Z2
3

)
cosα

− bZ1 sin
2 α cosα+ bH1Z1Z3 sinα cosα−H1Z1 cosα,

(13.11)

β′
1 = (1 + bH1)Z2

cosα

sinα
, (13.12)

β′
2 = − (1 + bH1)Z1

cosα

sinα sin β1
, (13.13)

where

Ψ(α, β1, β2, Z) = −b
(
Z2
1 + Z2

2 + Z2
3

)
cosα+ b sin2 α cosα− bH1Z3 sinα cosα;

as above, the dimensionless parameters b and H1 and the constant n1 are chosen as follows:

b = σn0, n2
0 =

AB

2I2
, H1 =

Bh

2I2n0
, n1 = n0. (13.14)

Thus, system (13.7)–(13.13) can be considered on its seven-dimensional phase manifold

W1 = R
1
+{v} × TS3

{
Z1, Z2, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
, (13.15)

i.e., on the direct product of the number half-line and the tangent bundle of the three-dimensional
sphere S3{0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π}.

We see that the seventh-order system (13.7)–(13.13) contains the independent sixth-order sys-
tem (13.8)–(13.13) on its own six-dimensional manifold.

For complete integration of system (13.7)–(13.13), in general, we need six independent first integrals.
However, after the change of variables(

Z1

Z2

)
→

(
Z
Z∗

)
, Z =

√
Z2
1 + Z2

2 , Z∗ = Z2/Z1, (13.16)

system (13.8)–(13.13) splits as follows:

α′ = −Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− bH1Z3 cos

2 α, (13.17)

Z ′
3 = sinα cosα− (1 + bH1)Z

2 cosα

sinα
+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα

+ bH1Z
2
3 sinα cosα−H1Z3 cosα,

(13.18)

Z ′ = (1 + bH1)ZZ3
cosα

sinα
+ bZ

(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα+ bH1ZZ3 sinα cosα−H1Z cosα,

(13.19)

Z ′
∗ = (±) (1 + bH1)Z

√
1 + Z2∗

cosα

sinα

cosβ1
sinβ1

, (13.20)
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β′
1 = (±) (1 + bH1)

ZZ∗√
1 + Z2∗

cosα

sinα
, (13.21)

β′
2 = (∓) (1 + bH1)

Z√
1 + Z2∗

cosα

sinα sin β1
. (13.22)

We see that the sixth-order system splits into independent subsystems of lower orders: sys-

tem (13.17)–(13.19) of order 3 and system (13.20), (13.21) (after the change of the independent
variable) of order 2. This, for the complete integrability of system (13.7), (13.17)–(13.22), it suf-
fices to specify two independent first integrals of system (13.17)–(13.19), one first integral of sys-

tem (13.20), (13.21), and two additional first integrals that “attach” Eqs. (13.22) and (13.7).
Note that system (13.17)–(13.19) can be considered on the tangent bundle TS2 of the two-

dimensional sphere S2.

13.2. Complete list of first integrals. System (13.17)–(13.19) has the form of a system of equa-
tions that appears in the dynamics of a three-dimensional (3D) rigid body in a nonconservative field.

Note that, by (11.19), the value of the velocity of the center of mass is a first integral of sys-
tem (11.26)–(11.32) (under condition (11.21)); namely, the function of phase variables

Ψ0(v, α, β1, β2, z1, z2, z3) = v2 + σ2
(
z21 + z22 + z23

)− 2σz3v sinα = V 2
C (13.23)

is constant on phase trajectories of this system (the values of z1, z2, and z3 are taken by virtue
of (11.25)).

Due to the nondegenerate change of the independent variable (for v �= 0), system (13.7), (13.17)–

(13.22) also possesses an analytic integral, namely, the function of phase variables

Ψ1(v, α, β1, β2, Z, Z∗, Z3) = v2
(
1 + b2

(
Z2 + Z2

3

)− 2bZ3 sinα
)
= V 2

C (13.24)

is constant on phase trajectories of this system.
Equality (13.24) allows one to find the dependence of the velocity of the characteristic point

of the rigid body (the cemter D of the disk) on the other phase variables without solving sys-
tem (13.7), (13.17)–(13.22); namely, for VC �= 0 we have

v2 =
V 2
C

1 + b2
(
Z2 + Z2

3

)− 2bZ3 sinα
. (13.25)

Since the phase space

W2 = R
1
+{v} × TS3

{
Z, Z∗, Z3, 0 < α < π, 0 < β1 < π, 0 ≤ β2 < 2π

}
(13.26)

of system (13.7), (13.17)–(13.22) has dimension 7 and contains asymptotic limit sets, we see that

Eq. (13.24) determines the unique analytic (even continuous) first integral of system (13.7), (13.17)–
(13.22) on the whole phase space (cf. [38, 91]).

We examine the existence of other (additional) first integrals of system (13.7), (13.17)–(13.22). Its

phase space is stratified into surfaces

{
(v, α, β1, β2, Z, Z∗, Z3) ∈ W2 : VC = const

}
; (13.27)

the dynamics on these surfaces is determined by the first integrals of system (13.7), (13.17)–(13.22).
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First, we establish a correspondence between the independent third-order subsystem (13.17)–(13.19)

and the nonautonomous second-order system

dZ3

dα
=

R2(α,Z,Z3)

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− bH1Z3 cos2 α

,

dZ

dα
=

R1(α,Z,Z3)

−Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− bH1Z3 cos2 α

,

R2(α,Z,Z3) = sinα cosα+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα

− (1 + bH1)Z
2 cosα

sinα
+ bH1Z

2
3 sinα cosα−H1Z3 cosα,

R1(α,Z,Z3) = bZ
(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα

+ (1 + bH1)ZZ3
cosα

sinα
+ bH1ZZ3 sinα cosα−H1Z cosα.

(13.28)

Using the substitution τ = sinα, we rewrite system (13.28) in algebraic form

dZ3

dτ
=

τ + bZ3

(
Z2 + Z2

3

)− bZ3τ
2 − (1 + bH1)Z

2/τ + bH1Z
2
3τ −H1Z3

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

)− bH1Z3 (1− τ2)
,

dZ

dτ
=

bZ
(
Z2 + Z2

3

)− bZ1τ
2 + (1 + bH1)ZZ3/τ + bH1ZZ3τ −H1Z

−Z3 + bτ (1− τ2) + bτ
(
Z2 + Z2

3

)− bH1Z3 (1− τ2)
.

(13.29)

Further, introducing homogeneous variables by the formulas

Z = u1τ, Z3 = u2τ, (13.30)

we transform system (13.29) into the following form:

τ
du2
dτ

+ u2 =
1− bu2τ

2 + bu2
(
u21 + u22

)
τ2 − (1 + bH1)u

2
1 −H1u2 + bH1u

2
2τ

2

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

,

τ
du1
dτ

+ u1 =
bu1

(
u21 + u22

)
τ2 − bu1τ

2 + (1 + bH1)u1u2 −H1u1 + bH1u1u2

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

,

(13.31)

which is equivalent to

τ
du2
dτ

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)u

2
1

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

,

τ
du1
dτ

=
2(1 + bH1)u1u2 − (b+H1)u1

−u2 + bτ2
(
u21 + u22

)
+ b (1− τ2)− bH1u2 (1− τ2)

.

(13.32)

We establish a correspondence between the second-order system (13.32) and the first-order nonau-
tonomous equation

du2
du1

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)u

2
1

2(1 + bH1)u1u2 − (b+H1)u1
, (13.33)

which can be easily transformed into exact-differential form:

d

(
(1 + bH1)u

2
2 + (1 + bH1)u

2
1 − (b+H1)u2 + 1

u1

)
= 0. (13.34)

Therefore, Eq. (13.33) has the first integral

(1 + bH1)u
2
2 + (1 + bH1)u

2
1 − (b+H1)u2 + 1

u1
= C1 = const, (13.35)
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which in terms of the previous variables has the form

(1 + bH1)Z
2
3 + (1 + bH1)Z

2 − (b+H1)Z3 sinα+ sin2 α

Z sinα
= C1 = const . (13.36)

Remark 13.1. Consider system (13.17)–(13.19) with variable dissipation with zero mean (see [91]),

which becomes conservative for b = H1:

α′ = −Z3 + b
(
Z2 + Z2

3

)
sinα+ b sinα cos2 α− b2Z3 cos

2 α,

Z ′
3 = sinα cosα− (

1 + b2
)
Z2 cosα

sinα
+ bZ3

(
Z2 + Z2

3

)
cosα− bZ3 sin

2 α cosα

+ b2Z2
3 sinα cosα− bZ3 cosα,

Z ′ =
(
1 + b2

)
ZZ2

cosα

sinα
+ bZ

(
Z2 + Z2

3

)
cosα− bZ sin2 α cosα+ b2ZZ3 sinα cosα− bZ cosα.

(13.37)

It possesses two analytic first integrals(
1 + b2

) (
Z2
3 + Z2

)− 2bZ3 sinα+ sin2 α = C∗
1 = const, (13.38)

Z sinα = C∗
2 = const . (13.39)

Obviously, the ratio of the two first integrals (13.38) and (13.39) is also a first integral of system (13.37).

However, for b �= H1, neither of the functions

(1 + bH1)
(
Z2
3 + Z2

)− (b+H1)Z3 sinα+ sin2 α (13.40)

and (13.39) is a first integral of system (13.17)–(13.19), but their ratio is a first integral of sys-
tem (13.17)–(13.19) for all b and H1.

We find the explicit form of an additional first integral of the third-order system (13.17)–(13.19).
For this purpose, we transform the invariant relation (13.35) for u1 �= 0 as follows:(

u2 − b+H1

2(1 + bH1)

)2

+

(
u1 − C1

2(1 + bH1)

)2

=
(b−H1)

2 + C2
1 − 4

4(1 + bH1)2
. (13.41)

We see that the parameters of this invariant relation must satisfy the condition

(b−H1)
2 +C2

1 − 4 ≥ 0, (13.42)

and that the phase space of system (13.17)–(13.19) is stratified into the family of surfaces determined
by Eq. (13.41).

Thus, by relation (13.35), the first equation of system (13.32) has the form

τ
du2
dτ

=
1− (b+H1)u2 + (1 + bH1)u

2
2 − (1 + bH1)U

2
1 (C1, u2)

−u2 + b (1− τ2) + bτ2
(
U2
1 (C1, u2) + u22

)− bH1u2 (1− τ2)
, (13.43)

where

U1(C1, u2) =
1

2

{
C1 ±

√
C2
1 − 4(1 + bH1)

(
1− (b+H1)u2 + (1 + bH1)u22

)}
(13.44)

and the integration constant C1 is defined by condition (13.42) or the form of the Bernoulli equation:

dτ

du2
=

(b− (1 + bH1)u2)τ − bτ3
(
1− U2

1 (C1, u2)− u22 −H1u2
)

1− (b+H1)u2 + (1 + bH1)u22 − (1 + bH1)U2
1 (C1, u2)

. (13.45)

Using (13.44), we can easily transform Eq. (13.45) into a nonhomogeneous linear equation

dp

du2
=

2((1 + bH1)u2 − b)p + 2b
(
1−H1u2 − u22 − U2

1 (C1, u2)
)

1− (b+H1)u2 + (1 + bH1)u
2
2 − (1 + bH1)U

2
1 (C1, u2)

, p =
1

τ2
. (13.46)
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This means that there exists another transcendental first integral in explicit form (i.e., through a finite

combination of quadratures). Moreover, the general solution of Eq. (13.46) depends on an arbitrary
constant C2. We omit the complete calculations but note that the general solution of the homogeneous
linear equation obtained from (13.46) in the particular case

|b−H1| = 2, C1 =
1−A4

1

1 +A4
1

, A1 =
1

2
(b+H1)

has the following solution:

p = p0(u2) = C[1−A1u2]
2/(1+A4

1)

∣∣∣∣∣
√

C2
1 − 4A2

1(1−A1u2)2 ± C1√
C2
1 − 4A2

1(1−A1u2)2 ∓ C1

∣∣∣∣∣
±A4

1/(1+A4
1)

× exp
2(A1 − b)(

1 +A4
1

)
A1(A1u2 − 1)

, C = const . (13.47)

Remark 13.2. Formally, in the expression of the first integral thus found, we must substitute for C1

the left-hand side of the first integral (13.35).
Then the additional first integral obtained has the following structure (similar to the transcendental

first integral from planar dynamics):

ln | sinα|+G2

(
sinα,

Z3

sinα
,

Z

sinα

)
= C2 = const . (13.48)

Thus, for the integration of the sixth-order system (13.17)–(13.22) we already have two independent

first integrals. For the complete integrability, as was noted above, it suffices to find one first integral
for the (potentially separated) system (13.20), (13.21) and an additional first integral that “attaches”
Eq. (13.22).

To find the first integral of the (potentially separated) system (13.20), (13.21), we establish a
correspondence between it and the following nonautonomous first-order equation:

dZ∗
dβ1

=
1 + Z2∗
Z∗

cos β1
sin β1

. (13.49)

After integration, this leads to the required invariant relation√
1 + Z2∗
sin β1

= C3 = const, (13.50)

which in terms of the variables Z1 and Z2 has the form√
Z2
1 + Z2

2

Z1 sin β1
= C3 = const . (13.51)

Further, to find an additional first integral that “attaches” Eq. (13.22), we establish a correspon-
dence between Eqs. (13.22) and (13.20) and the following nonautonomous equation:

dZ∗
dβ2

= − (
1 + Z2

∗
)
cos β1. (13.52)

Since, by (13.50),

C3 cosβ1 = ±
√
C2
3 − 1− Z2∗ , (13.53)

we have
dZ∗
dβ2

= ∓ 1

C3

(
1 + Z2

∗
)√

C2
3 − 1− Z2∗ . (13.54)
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Integrating this relation, we obtain the following quadrature:

∓(β2 +C4) =

∫
C3dZ∗

(1 + Z2∗ )
√

C2
3 − 1− Z2∗

, C4 = const . (13.55)

Another integration leads to the relation

∓ tan(β2 + C4) =
C3Z∗√

C2
3 − 1− Z2∗

, C4 = const . (13.56)

In terms of the variables Z1 and Z2, this invariant relation becomes

∓ tan(β2 + C4) =
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

, C4 = const . (13.57)

Finally, we have the additional first integral that “attaches” Eq. (13.22):

arctan
C3Z∗√

C2
3 − 1− Z2∗

± β2 = C4, C4 = const (13.58)

or

arctan
C3Z2√(

C2
3 − 1

)
Z2
1 − Z2

2

± β2 = C4, C4 = const . (13.59)

Thus, in the case considered, the system of dynamical equations (11.3)–(11.6), (11.9)–(11.14) under
condition (13.5) has eight invariant relations: the analytic nonintegrable constraint of the form (11.19)

corresponding to the analytic first integral (13.23), the cyclic first integrals of the form (11.17)
and (11.18), the first integral of the form (13.36); moreover, there is a first integral that can be found
from Eq. (13.46) (it is a transcendental function of phase variables in the sense of complex analysis),

and, finally, transcendental first integrals of the form (13.50) (or (13.51)) and (13.58) (or (13.59)).

Theorem 13.1. System (11.3)–(11.6), (11.9)–(11.14) under conditions (11.19), (13.5), (11.18),
and (11.17) possesses eight invariant relations (complete set), four of which are transcendental func-

tions (from the point of view of complex analysis). Moreover, at least seven of these eight relations
are expressed through finite combinations of elementary functions.

13.3. Topological analogies. We show that there exists another mechanical and topological anal-
ogy.

Theorem 13.2. The first integral (13.36) of system (11.3)–(11.6), (11.9)–(11.14) under condi-

tions (11.19), (13.5), (11.18), and (11.17) is constant on phase trajectories of system (10.14)–(10.19).

Proof. Indeed the first integral (13.36) can be obtained by a change of coordinates by means of
relation (13.35), whereas the first integral (10.35) can be obtained by a change of coordinates by

means of relation (10.34). But relations (13.35) and (10.34) coincide. The theorem is proved.

Thus, we have the following topological and mechanical analogies in the sense explained above:

(1) motion of a free rigid body in a nonconservative field with a tracing force (under a nonintegrable

constraint);
(2) motion of a fixed physical pendulum in a flow of a running medium (nonconservative field);
(3) rotation of a rigid body about the center of mass that moves rectilinearly and uniformly in a

nonconservative field.

On more general topological analogies, see also [91].
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