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1. Vector Spaces and Algebras of Endomorphisms

Let R
n be a vector space of dimension n over the field of real numbers. This means that R

n is
equipped with a commutative and associative operation called addition with respect to which R

n is a

group and an operation of multiplication of elements of Rn by real numbers (this operation is always
assumed to be a distributive linear transform). Moreover, there exist n elements e1, e2, . . . , en such
that any element x ∈ R

n can be uniquely represented in the form

x =

n∑

i=1

xiei = xiei, xi ∈ R,

Here we accept the Einstein summation convention: when an index variable appears twice in a single
term, it implies summation of that term over all the values of the index (which is usually clear from

the context).
An additive mapping f : Rn → R

k is a homomorphism (of commutative groups with respect to
addition) between the spaces R

n and R
k. A linear mapping f : Rn → R

k is a homomorphism (of

modules over R) between the spaces Rn and R
k. In the finite-dimensional case, the notions of a linear

mapping and a continuous additive mapping coincide.
Definitions of multiplication in modules, rings, and algebras include distributivity, which means the

additivity of the multiplication transform from the left and from the right. Instead, we require the
linearity of multiplication (from the left and from the right), which is a stronger condition. Linear
mappings f : Rn → R

n are called endomorphisms of the space Rn. They form not only a vector space

of dimension n2, but also an associative algebra Mn with unity. The multiplication operation in this
algebra is not commutative.

If f is a linear mapping from R
n to Mn, then in the space R

n we can define multiplication by the

rule

x ∗ y = f(x)(y).

However, for an arbitrary linear mapping, the obtained structure of an algebra on R
n is neither

commutative nor associative. The associativity condition is equivalent to the condition

f(x ∗ y) = f(x)f(y),
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i.e., the condition that f is a mapping of rings. Then f maps Rn into an n-dimensional subalgebra of

the algebra Mn.
If in an algebra there is no preimage of the identity matrix, we can introduce such an element

increasing the dimension of the algebra by 1.
We propose a physical interpretation of these constructions in the framework of the special theory of

relativity (STR). By R
n we mean coordinates of events in some inertial reference system. A transition

to another inertial reference system corresponds to a linear (invertible) transform of coordinates of
events. The commutativity of the algebra is equivalent to the commutativity of the Lorentz addition of

velocities, when the reference systems 3 and 4 coincide (the reference system 3 is a system that moves
with velocity u with respect to the reference system 1, which, in turn, moves with velocity v, and
the reference system 4 is a system that moves with velocity v with respect to the reference system 2,

which, in turn, moves with velocity u). In principle, noncommutativity of multiplication in an algebra
is allowed.

Velocities correspond to the indicatrix, so that multiplication (or Lorentz addition) of velocities

determines a Lie group of dimension n− 1.
Actually, in the STR, all transforms of a transition to another inertial reference system are not

closed with respect to multiplication. If we take all possible sums and products of such elements, then

we obtain a subalgebra M4 that commutes with the operator of multiplication by the matrix I, which
in an appropriate basis has the form

I =

(
i O
O i

)
,

where

O =

(
0 0
0 0

)
, i =

(
0 1
−1 0

)
.

It is isomorphic to the algebra M2(C) of dimension 8 with respect to the set of real numbers R.

In the STR, multiplication (Lorentz addition) is defined independently of multiplication in M2(C)
(the algebra obtained is neither a subalgebra nor a quotient algebra). The algebra obtained contains
the rotation group (with respect to multiplication) G. Moreover, for any transform f(x) and any

element g ∈ G, there exists another element g1 ∈ G such that

gf(x) = f(x)g1,

and the condition

f(x1)g1 = f(x2)g2, x1 �= 0,

implies

x1 = x2, g1 = g2.

For any two elements x1 and x2, there exist x3, g ∈ G such that

f(x1)f(x2) = f(x3)g.

This allows one to define multiplication of velocities similar to multiplication in the quotient group

x1 ∗ x2 = x3, which defines multiplication up to Thomson rotations. We obtain

ln(f(x3)) = ln(f(x1)) + ln(f(x2)) mod J,

where J is the ideal corresponding to G in the Lie algebra of the group of invertible transforms M2(C).

However, this multiplication is not related to the addition operation by the distributivity law. The
genuine algebra of the SRT is the Clifford algebra Cl(3) ∼= M2(C), which also has the biquaternion
representation (see [13]). Correspondingly, there is nothing wrong in the fact that the dimension of the

algebra is greater than the dimension of the representation space. Generally speaking, multiplications
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that correspond to velocities do not define the algebra completely. We must also introduce multipli-

cations by λv, λ ∈ R+, and several multiplications that correspond to the reversal of orientation of
time and/or space and permutation of directions in space.

In polynumbers (i.e., finite-dimensional associative algebras over R with unities), the operation of
exponential mapping can be introduced:

exp(0) = 1, exp(a1) = exp(a)1, a ∈ R.

In this case, if elements x and y commute, then

exp(x+ y) = exp(x) exp(y).

Images of the exponential mapping are vectors (subsequently, we identify a vector with its matrix
representation) corresponding to positive eigenvalues.

First, we consider the case of a commutative algebra. In this case, all transforms f(x) have the
same basis of eigenvectors and can be diagonalized in this basis, which reduces the algebra to the
direct sum of the algebras of real and complex numbers, Rn−2k+C

k, where k is the number of pairs of

complex conjugate eigenvectors for the basis. Therefore, any function of vectors invariant with respect
to a transition to another basis is a symmetric function on eigenvalues (i.e., a function of diagonal
elements in a special basis). This is also valid in the noncommutative case.

Groups of coordinate transformations act on functions of vectors (elements of the algebra). There
is the canonical Galois correspondence between transformation groups and the sets of functions that
remain invariant under the actions of these groups (see [5]). The minimal transformation group of

interest is the group of automorphisms of the set of polynumbers, i.e., the group of invertible linear
mappings for which

a(xy) = a(x)a(y).

From the point of view of physics, functions that are not preserved even under the action of automor-
phisms of the algebra are not of interest. A wider group is obtained by complementing automorphisms
with antiautomorphisms (which can be called odd automorphisms), i.e., invertible linear transforma-

tions for which

a(xy) = a(y)a(x).

Clearly, the product of two antiautomorphisms is an automorphism. Therefore, functions that are

preserved under automorphisms but are not preserved under the extension of the group by the antiau-
tomorphisms described above, can be called odd functions, whereas functions that are also preserved
under antiautomorphism can be called even functions. A wider group is obtained if we consider all in-

vertible linear transformations (module automorphisms instead of algebra automorphisms). Function
that are preserved under the action of this group are said to be invariant.

There are no invariant vectors. Unit vectors are preserved under both automorphisms and antiauto-

morphisms, i.e., they are even vectors. At the same time, there exists an invariant covector (i.e., linear
function on vectors), for example, the trace Tr and any proportional covector. The (n−1)-dimensional
subspace of vectors that are annihilated by this covector is also invariant.

An invariant covector allows one to define the “real” and “imaginary” parts of a vector as follows:

Re(x) =
1

n
Tr(x), Im(x) = x− Re(x) ∗ 1.

The conjugate (symmetric) vector for a vector x is defined as 2∗1Re(x)−x, where 1 denotes the unit

vector.
In algebras that are obtained by several iterations of the doubling procedure starting from some

commutative algebra, the transition to the conjugate element is an involution (i.e., an antiautomor-

phism whose square is the identity automorphism). The doubling is performed so that the extended
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conjugation remains an involution in the doubled algebra. In physics, the “real” part usually corre-

sponds to the time coordinate and the “imaginary” part to the spatial coordinate.
The polynomial functions Tr(xm), m = 1, . . . , n, are invariant functions. In the algebras Hn = R

n

(the direct sums of n copies of the set of real numbers), there exist automorphisms that swap n “unities”
of each components. This set of n unities is also invariant with respect to automorphisms and their

sum—the unity of the algebra—is invariant with respect to automorphisms and antiautomorphisms.
Therefore, any invariant function in metrics of Berwals–Moor or Chernov (with symmetric functions)
type can be expressed as a function of the above polynomials. Such functions of several vectors can

also be expressed in the same form as a function of polynomials of several variables.
In the case of noncommutative multiplication, the difference is only in the use of noncommutative

polynomials. However, the trace is independent of the order of factors and hence we obtain the same

invariant functions despite the fact that matrices of multiplication are distinct. One can construct
homogeneous metrics using homogeneous polynomials of such functions. For example, using three
constants, we can construct a metric of rank 3:

ds3 = aTr(xyz) + b
[
Tr(x)Tr(yz) + Tr(y)Tr(xz) + Tr(z)Tr(xy) + cTr(x)Tr(y)Tr(z)

]
. (1)

2. Polylinear Functions and Metrics

Polylinear functions of rank k can be defined as functions

f : V k → R, V = R
n

linear with respect to each of the variables. These functions can also be defined in the form

f(x1, . . . , xk) = gi1...ikx
i1
1 . . . xikk .

If a functions does not change its value under an arbitrary permutation of arguments, then it is said

to be symmetric. As metric tensors, only symmetric polylinear functions can be used. The length of
a vector is defined as the power of order 1/k of a symmetric polylinear function f(·, . . . , ·) (with the
same arguments).

Introducing the indices

jm = im +m− 1, 1 ≤ j1 < · · · < jk ≤ n+ k − 1,

and taking symmetry into account, we can reduce the indices of a tensor to the form

i1 ≤ · · · ≤ ik.

Therefore, the number of independent components of a symmetric tensor of rank k is equal to Ck
n+k−1.

Actually, tensors that are usually used for constructing metrics possess an additional symmetry of
numeration of coordinates. In the case of total symmetry with respect to numeration, the number of

independent components is expressed by the well-known partition function (see [7]) p(k, n) ≤ 2k−1;
it is equal to the number of representations of a number k as the sum of no more than n natural
numbers. For n ≥ k (this condition holds in all cases) all values are p(k, n) = p(k) and

p(1) = 1, 2 = 1 + 1,

p(2) = 2, 3 = 2 + 1 = 1 + 1 + 1,

p(3) = 3, 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1,

p(4) = 5, 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1,

p(5) = 7,

p(6) = 11, etc.
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For example, the symmetric bilinear function discussed at the end of the previous section are func-

tions of such type. In particular, for k = 2 we have two symmetric bilinear functions, one of which

corresponds to gij = δji and the other to gij = 1− δji .
All other such functions are linear combinations of these two functions. In the case where an index

symmetry occurs for all indices except for one of them (which corresponds to time), the number of

independent components is

p1(k, n) = p(k, n − 1) + p(k − 1, n − 1) + · · · + p(1, n− 1) + 1.

However, in the algebras Hn = R
n (the direct sum of n copies of the set of real numbers), each

component is contained symmetrically (although there is a selected vector, namely, the sum of the
components of the unity). Therefore, metrics that are related to the algebra must be completely

symmetric.
Polylinear metrics of rank k ≤ n related to the polynumber structure (i.e., invariant with respect to

the action of the automorphism group of polynumbers) are defined by p(k) parameters. Such metrics

are said to be polynumber metrics. The number of parameters of a metric in a general-relativity analog
is still greater by n2; it is related to the choice of n generators of the algebra in the n-dimensional
space. However, not all n2 parameters are independent. For example, an analog of the Berwald–Moor

metric

ds4 = de1 de2 de3 de4, ei = ait+ bix+ ciy + diz, i = 1, 2, 3, 4,

contains 16 parameters related to multiplication by numbers

ri, i = 1, 2, 3, 4, r1r2r3r4 = 1.

This leads to 13 parameters of the orientation of the metric for the Berwald–Moor metric; moreover, all
these parameters can change from one point to another. In a special-relativity analog, all parameters
are constant. The general form of the metric in the SRT is as follows:

ds = dt
(
1− P2(v) + P3(v) + . . .

)
, P2(v) =

1

2

(
v21 + · · ·+ v2n−1

)
, (2)

where

vi =
dxi

dt
and Pk(v) is a symmetric polynomial of degree k of the coordinates of the velocity v.

This can be justified as follows: any symmetric function of coordinates (only if they are invariant
with respect to all automorphisms) can be represented as a function of symmetric functions. If we

factor out dt, we obtain a homogeneous function of degree 0, i.e., a function of the ratios
Πk

(Π1)k
,

k = 2, . . . , n, where Πk is the kth symmetric polynomial of generators. We show below that they are

symmetric functions of the velocities.
More precisely, there exist metrics invariant with respect to automorphisms whose expansions in (2)

starts from terms of order higher than 2. However, they are degenerate critical metrics that can be

reduced to a noncritical form by a small deformation and can be written in the form (2) in an
appropriate basis.

The coordinates of velocity can be found up to rotations from the expression for P2(v) (see (2)).

Except for degenerate cases, due to the contributions of higher degrees of velocity, the symmetry of
coordinates is reduced to permutations of coordinates.

Consider homogeneous metrics starting from the case k = 2 (the case where k = 1, ds = dt, is not

of interest). We have

ds2 = a
(
dx1 + · · ·+ dxn

)2
+ b

(
dx21 + · · ·+ dx2n

)
. (3)
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We pass to the following coordinates:

y0 =
x1 + · · ·+ xn

n
, yi = xi + qxn − r

x1 + · · ·+ xn
n

, i = 1, . . . , n− 1.

The inverse transition is performed by the formulas

xn =
1

q(n− 1)− 1

[
(rn− r − n)y0 +

n−1∑

i=1

yi

]
,

xi = yi + ry0 − q

q(n− 1)− 1

[
(rn− r − n)y0 +

n−1∑

i=1

yi

]
.

Taking first differentials

dxi = dyi − αs1 + βdy0, i = 1, . . . , n − 1, dxn = fs1 + gdy0,

where

sm =

n−1∑

i=1

(dyi)
m

is a symmetric form of degree m of the variables dyi, i = 1, . . . , n− 1, we obtain

f = α(n− 1)− 1, g = n− β(n− 1)

and
n∑

i=1

(dxi)
2 = s2 − 2αs21 + 2βs1dy0 + (n− 1)(βdy0 − αs1)

2 + (fs1 + gdy0)
2.

Equating the coefficients of s21 and s1dy0 in the last expression to zero, we have

α2n(n− 1)− 2αn + 1 = 0, (β − 1)n(1 + α− αn) = 0.

Thus, we obtain the following relations:

β = 1 = g, α =
1

n∓√
n
, f = ± 1√

n
, q =

−1

n∓√
n
= −r.

Substituting these expressions into (3), we have
n∑

i=1

(dxi)
2 = s2 + ndy20,

ds2 = (a+ bn)(dy0)
2 + b

n−1∑

i=1

(dyi)
2.

The metric defined by the last relation is nondegenerate when

b �= 0, a �= −bn.

Finally, we have

xi = yi + y0 − 1

n∓√
n

n−1∑

j=1

yj, i < n, xn = y0 ± 1√
n

n−1∑

j=1

yj,

y0 =
1

n

n∑

j=1

xj , yi = xi − xn
1∓√

n
+

1

n(1∓√
n)

n∑

j=1

xj.

(4)

Now we show that precisely these coordinates, up to scaling of time and length (spatial measure),
correspond to the separation of the time and spatial coordinates for any metric invariant under ar-

bitrary automorphisms of the algebra Hn. More precisely, there is arbitrariness in the elimination of
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one variable (in our case, xn; this is similar to the choice of one affine parameter, which is a coordinate

in a projective manifold), arbitrariness in the choice of the sign ±√
n, and arbitrariness of ordering of

the variables yi (due to symmetry, the metric itself is independent of the last two arbitrary factors),
and, finally, arbitrariness of scaling of time and space.

We assume that summing of yi is performed over i = 1, . . . , n− 1. We denote their symmetric forms

(with respect to the variables y) as follows:

sj =
∑

dyji , σm =
∑

i1<···<im

dyi1 . . . dyim.

We denote the symmetric form with respect to all variables x by

Sj =
∑

dxji , Πm =
∑

i1<···<im

dxi1 . . . dxim .

The reduction to the form (2) is equivalent to the expression of Sj, j > 1, of Πj , j > 1, through the

variables

z0 = dy0 =
1

n
S1, s1, s2, . . . ,

as follows:

Sj = (z0 + fs1)
j + (n− 1)(z0 − αz1)

j +

j∑

m=1

smCm
j (z0 − αz1)

j−m

= nzj0 + zj−2
0 s21C

2
j

(
n(n− 1)α2 − 2nα+ 1

)
+ . . . ,

i.e., for

f =
1

±√
n
, α =

f2

1− f
=

1

n∓√
n

the second term of the expansion considered vanishes for any j.
Therefore, the following relation holds:

Sj = nzj0 +

j∑

m=3

Cm
j zj−m

0 sm1

[
fm + (n− 1)(−α)m +m(−α)m−1 +

j∑

m=2

Cm
j sm(z0 − αs1)

j−m . . .

]
. (5)

As in to the Newton–Girard formulas, we can obtain metrics expressed through permanents and

calculate the corresponding anisotropy coefficients.
The basic metrics used in Finsler geometry are permanent, i.e., they can be expressed in the form

dsk = Πk, Πk =
∑

i1<···<ik

dxi1 . . . dxik .

We present expressions for the time coordinate for this case.

These formulas can be obtained from the above by using the Newton–Girard formulas. This yields
the value a =

√
3/2 for the anisotropy (it depends only on n, which is equal to 4 in our case) of the

Chernov metric and two values a and b for the Berwald–Moor metric. Similarly, we obtain

Πm = (z0 + fs1)
m−1∑

k=0

Ck
m−n+kσm−1−k(z0 − αs1)

k +
m∑

k=0

Ck
m−1−n+kσm−k(z0 − αs1)

k. (6)

This implies that any noncritical metric invariant under automorphisms of polynumbers Hn can be
reduced to the form (2) by scaling the time variable y0 and the space variables yi (t = c1y0, zi = c2yi)

under certain inequalities for parameters.
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Arbitrariness of the choice of variables leading to the form (2) in the case where P2(v) is an arbitrary

symmetric polynomial of degree 2 is substantially wider and it does not allow one to define spatial
relations (length).

We present the final expressions for Sj , Πj , j = 1, 2, 3, 4:

S1 = nz0, S2 = nz20 + s2, S3 = nz30 + 3s2z0 +A31s
3
1 +A32s1s2 + s3,

S4 = nz40 + 6z20s2 + 4z0
(
A31s

3
1 + 3αs2s1 + s3

)
+ P4,

P4 = A41s
4
1 + 6α2s2s

2
1 + 4αs3s1 + s4,

A31 =
1

(n±√
n)2

(
2± 1√

n

)
∓ 1√

n

(
3

8

)
,

A32 = −3α = −3
1

n±√
n

(−3

2

)
,

A41 =
−1

(n±√
n)3

(
3± 1√

n

)
+

1

n2
.

(7)

In the case of a metric of degree k, we similarly obtain that

dsk = (dt)k

(
1− k

2
V2 +

k∑

i=3

Pi(V )

)
, Vm =

∑

i

(
dyi
dt

)m

, (8)

where Pi(V ) are homogeneous polynomials of degree i of the spatial coordinates of velocities:

P3(V ) = a31V
3
1 + a32V1V2 + a33V3, . . . , Pk(V ) =

p(k)∑

i=1

akiTi(V ).

Precisely these terms lead to anisotropy. In the Berwald–Moor and Chernov metrics defined by per-
manents, the coefficients of anisotropic terms cannot be adjusted and are uniquely calculated from (8).
Therefore, this does not allow one to introduce a small anisotropy. To remove this shortcoming, one

introduces metrics with arbitrary coefficients that preserve their form under arbitrary automorphisms
of polynumbers; they are called polynumber metrics.

Using (7), we can reduce a cubic metric to the form

ds3 = a1S
3
1 + a2S1S2 + a3S3 = b1z

3
0 + b2z0s2 + a3

(
A31s

3
1 +A32s1s2 + s3

)
,

b1 = a1n
3 + a2n

2 + a3n, b2 = na2 + 3a3.

After normalization with respect to the time and space coordinates y, the metric contains only one
parameter adjusting anisotropy:

ds3 = dt3 − 3

2
dt

(
dx2 + dy2 + dz2

)
+ aP3(dx, dy, dz), (9)

where P3(dx, dy, dz) is a given symmetric polynomial of degree 3. The last term causes anisotropy.
In particular, under reversal of space orientation, this term changes its sign. It is hard to imagine

that the reversal of the orientation of a ruler changes its length. That is why the authors hold the
view that the spatial metric (without time) is Euclidean.

The speed of light and the so-called Lorentz transforms (transforms of one inertial reference system

into another) depend on direction (near singularities). In the latter case, anisotropy appears only
in terms of the third order with respect to velocities (the speed of light has order 1 but depends on
direction). In the case k = 4, the metric has two anisotropy parameters:

ds4 = dt4 − 2 dt2
(
dx2 + dy2 + dz2

)
+ a dt P3(dx, dy, dz) + b P4(dx, dy, dz). (10)
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For a = 0, the anisotropy is even and properties do not change under the reversal of spatial

orientation.
By a rank-k metric, one can obtain a metric of lower rank by a convolution with fixed vectors.
Let m > k and vectors Ai

l, l = 1, . . . ,m − k, be given. Then a metric of rank m is obtained as
follows:

g′j1...jm = gi1...im−kj1...jmA
i1
1 . . . A

im−k

m−k

(here summation over repeated indices is assumed).

Metrics obtained in this way with positive (exponentially representable) vectors are called accom-
panying metrics. Accompanying metrics are invariant with respect to automorphisms of the algebra
if all vectors Ai

l are proportional to the unit vector 1i = 1. Such accompanying metrics are called sub-

ordinated metrics. For example, the Chernov metric is a subordinated metric for the Berwald–Moor
metric.

A symmetric metric whose accompanying metrics of rank 2 have the signature (+,−,−, . . . ,−) and

which is negative definite on the hyperplane Tr(x) = 0 and positive on the unit vector 1 is called a
Lorentz-type metric. This notion is similar to the notion of the hyperbolicity of a polynomial in the
sense of G̊arding, which defines a metric with respect to a unit vector [3].

Metrics that are subordinated to the Berwald–Moor metric are called metrics of permanent type.
They are conformally equivalent to Πk.

In the following section, we present remarkable properties of such metrics. Here we mention only

the following obvious property (which follows directly from the definition): an accompanying metric
for a Lorentz-type metric is also a Lorentz-type metric.

In view of the importance of the case n = 4 for physics (in this case, in addition, irrationalities in
transition expressions disappear), we rewrite for this case all types of anisotropy of metrics of third

and fourth orders, which depend on n. The case n = 4 is remarkable not only by the disappearance of
irrationalities, but also by the fact that, in the case of positive sign, transitions are realized supersym-
metrically (this holds only for n = 4) and anisotropy polynomials are of the simplest form. Therefore,

the case n = 4 is remarkable.
We rescale the spatial variables as follows:

t = y0, x =
y1
2
, y =

y2
2
, z =

z2
2
.

Then we have

x1 = t+ x− y − z, x2 = t+ y − x− z, x3 = t+ z − x− y, x4 = t+ x+ y + z. (11)

Therefore,
Π1 = 4dt,

Π2 = 2
(
3dt2 − dx2 − dy2 − dz2

)
,

Π3 = 4dt
(
dt2 − dx2 − dy2 − dz2

)
+ 12dx dy dz,

Π4 = dt4 − 2dt2
(
dx2 + dy2 + dz2

)
+ 8dt dx dy dz + dx4 + dy4 + dz4

− 2
(
dx2dy2 + dy2dz2 + dz2dx2

)
.

(12)

Here Π2 corresponds to the Minkowski metric (we still have freedom of choice of the spatial and
time scale), Π3 corresponds to the Chernov metric (with the simplest anisotropy for n = 4), and Π4

corresponds to the Berwald–Moor metric. All these metrics are permanent.

If there is a chosen vector 1, from a metric of rank k we can obtain metrics of lower rank by replacing
some vectors (missing in scalar products of lower rank) by the vector 1 in the scalar product of rank k.
For example, if we have a trilinear scalar product (A,B,C), then it is possible to obtain the associated

bilinear scalar product (A,B) = (A,B, 1) by using the chosen vector.
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In polynumber metrics, there always exists a chosen vector 1 corresponding to the identity matrix.

By means of the unit vector one can obtain metrics of lower rank and define angles of lower rank in
such a subordinated metric. Moreover, the case k = n corresponds to the Berwald–Moor metric:

1

n!
det

⎛

⎜⎜⎝

x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .
xn1 xn2 . . . xnn

⎞

⎟⎟⎠

(the permanent of the coordinates of vectors in a specific basis). It also is a norm of a vector as in
number theory.

Thus, the norm of the product of polynumbers is equal to the product of their norms. Therefore,
polynumber metrics of lower rank can be obtained by filling n − k columns with 1’s. In particular,
the Chernov metric is obtained in this way from the Berwald–Moor metric by replacing one column

by a column consisting of 1’s. This procedure, up to a conformal factor, is equivalent to the rejection
of the highest anisotropic term in the metric, reduction by z0, and decreasing the degree of ds by 1.

A general metric of rank 3 in the case n = 4 can be reduced by scaling (when the signs of a, 2a+ b,

and c in the expression aΠ1Π2 + bΠ3 + cΠ3
1 coincide) to the form

ds3 = dt
(
dt2 − dx2 − dy2 − dz2

)
+ a dx dy dz. (13)

Therefore, in the general case a metric of rank 4 (under appropriate conditions) has the form

ds4 = dt4−2dt2
(
dx2 + dy2 + dz2

)
+a dt dx dy dz+b

(
dx4 + dy4 + dz4

)
+c

(
dx2dy2 + dy2dz2 + dz2dx2

)
.

(14)
The number of parameters is equal to p(4) − 2 = 3, where p(4) is the total number of parameters
minus two parameters owing to spatial and time scaling.

A spatial metric (a definition of lengths) can be introduced as follows:

dr2 = lim
dt→∞

(
dt2 − ds2

)
.

The degree 2 in this formula corresponds to all nondegenerate (noncritical) metrics and can be replaced
by a higher degree only in the degenerate case. Moreover, in all nondegenerate cases, this metric is
the usual Euclidian metric.

Using this metric, it is possible to calculate the speed of light in various directions by (12). For
the Chernov and Berwald–Moor metrics, the speed of light in the directions of the spatial axes x, y,
and z is equal to 1. The minimal speed corresponds to the direction (−1,−1,−1); for the Chernov

metric it is equal to 0.823, and for the Berwald–Moor metric to 1/
√
3. In the last case, the speed of

light reaches the maximal value (
√
3) in the direction (1, 1, 1); however, for the Chernov metric, the

inequality ds �= 0 holds for this direction (it seems that light does not propagate). This shows that one

need examine metrics whose anisotropy is less than the anisotropy of the metrics considered above.

3. Polyingles

We discuss several approaches to the notion of polyingles between k vectors in a space with a metric
of rank k, which generalizes the notion of an angle (bingle) between two vectors for quadratic metrics.

A polyingle must be defined as a function of k vectors {A1, . . . , Ak} in a space with a metric of rank k
satisfying the following conditions:

(1) the function is symmetric, i.e., invariant under any permutation of arguments:

{A1, A2, A3, . . . , Ak} = {A2, A1, A3, . . . , Ak},
{A1, A2, . . . , Ak−1, Ak} = {Ak, A1, A2, . . . , Ak−1};
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(2) the k-ingle is independent of the lengths of vectors and depends only on their directions, i.e.,

the function is homogeneous of degree 0 with respect to all arguments:

{λA1, . . . , Ak} = λ{A1, . . . , Ak}, λ ∈ R+;

(3) if c is an isometry of the space, then

{c(A1), . . . , c(Ak)} = {A1, . . . , Ak};
(4) for positive (i.e., exponentially representable) vectors, polyingles are always defined and contin-

uously depend on variations of vectors in this domain.

Actually, these conditions imply that property (3) is also valid for conformal transforms.
Therefore, if conformal transforms transitively act on the set of vectors (this is valid for polynum-
ber metrics), then

{A, . . . , A} = {B, . . . , B} = const.

By analogy to bingles, this constant can be made equal to 1 by normalization.

(5) A polyingle is not a constant function for positive vectors.

However, these requirements do not suffice to define k-ingles. Assume that there exist a transform
u preserving a k-ingle and changing only the first two vectors so that it is possible to decrease the

angle between them to zero. Using such transforms repeatedly, we superpose all the vectors into a
single vector. This can be easily proved for the transform

(A1, A2) → (B,B), B =
A1 +A2

2
.

In this case, the sum of the vectors is preserved and, therefore, in the limit, all the vectors become
equal to their arithmetic mean value and, bearing in mind the remark after condition (3), this leads

to a constant value.
In the general case, one can similarly reduce a polyingle to a constant value.
The following lemma can be proved similarly.

Lemma 1. If the symmetry group of a k-ingle is the general linear group GL(n), then this k-ingle is
constant, i.e., contradicts condition (5).

Proof. Let k vectors {A1, . . . , Ak} be linearly independent. Then we take any vector from this set, say

A1, and apply the transforms

Ai → A1 +Ai

2
, i �= 1.

Further, applying such transforms repeatedly (the vectors still remain independent and hence such

transforms belong to the group Gl(n)), we obtain a contradiction with condition (5).
The case where the initial vectors {A1, . . . , Ak} are linearly dependent can be reduced to the above

case by taking independent vectors arbitrarily close to given vectors.

The mapping, which associates with any set of k vectors V k ∈ R
n their k-ingle, stratifies the given

set into levels, and the transformation group G preserving k-ingles acts so that each orbit belongs to
a certain level set. Thus, we find that the group G cannot contain elements that change only two

vectors and preserves the other vectors.
Some orbits of this group may not contain a “standard” type that annihilates bingles. For example,

if all k vectors are equal, then it is unlikely that the group G enables their “disconnection” so that

they become pairwise orthogonal.
Most likely, such an orbit is degenerate and contains only all sets of identical k vectors. Moreover,

for some metrics, the fact that a set of k vectors contains a vector orthogonal to all other vectors

probably implies that the corresponding k-ingle vanishes. This means that counting of the number
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of conditions and the reduction of k vectors to the standard form, provided that the number of these

conditions is less than the dimension of the group, does not imply the possibility of such a reduction.
One way of defining k-ingles is as follows. First, we define this notion for coinciding vectors and

then introduce formulas that describe the change of k-ingles under the change of one of the vectors in
a direction perpendicular to the other vectors.

The analysis of various definitions of k-ingles allows one to reject most of them, whereby only
definitions based on homogeneous functions are adopted. Taking into account the fact that not all
spaces contain a selected vector, we conclude that the definition of k-ingles should be rather general

and independent of this property. Therefore, the general form of a k-ingle is a combination of the
scalar products of k vectors taken in various combination.

It is possible to construct 2k−1 types of combinations of k vectors (see the previous section). How-

ever, many types of combinations related to permutations give the same results; they correspond to
various partitions of the number k into the sums p(k). For example, we obtain two types of partitions
for k = 2:

1 + 1, 2;

therefore,

(A,B)

is the first type and

(A,A), (B,B)

is the second type. For k = 3, we have

1 + 1 + 1, 2 + 1, 3;

therefore,

(A,B,C)

is the first type,

(A,A,B), (A,A,C), (B,B,A), (B,B,C), (C,C,A), (C,C,B)

is the second type, and

(A,A,A), (B,B,B), (C,C,C)

is the third type.
As the first type, we take the representation of k as k unities. In this type, we have a unique scalar

product. For all types we introduce the following quotient:

ρi =
(Π(Aj(1), Aj(2), . . . , Aj(k)))

1/mi

|A1| · |A2| · · · · · |Ak| ;

the denominator contains the norms of the vectors:

|A| = (A,A, . . . , A)1/k

(the case i = p(k) yields the unity (1)). All these values satisfy the necessary requirements for the
definition of k-ingles.

If for a k-ingle there exist several functions, then any function of such k-ingles can also be taken as

a k-ingle. Therefore, any function of p(k)− 1 arguments

ρi, i > 1, ρp(k) ≡ 1,

defines a k-ingle.
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Note that if all vectors are the same (Ai = A), then ρi ≡ 1 and, therefore, we can assume that the

k-ingle is equal to 1. In the case where one vector is B and all the other vectors are the same and
equal to A, then

ρ1 =
(A, . . . , A,B)

|A|k−1|B| , ρ2 =
(A, . . . , A,B)

k−2
k (A, . . . , A,B,B)

1
k

|A|k−1|B| , . . .

Since the function p(k) rapidly increases as k grows, the number of functionally independent quan-
tities can be substantially less than their total number. Therefore, it is advisable to operate with the
smallest quantity of these numbers.

For m1 = 1, we can find ρ1 from the definition of bingles. For an even number m2 = k(k − 1) of
changes of the composition of vectors, we can calculate the value ρ2 corresponding to the partition
2 + 1 + 1 + · · ·+ 1 (k − 2 unities and one deuce).

If a k-ingle can be expressed through only one of these numbers, there is no need to take a function
of it. For bingles, we use a trigonometric function (or, in the case of a pseudo-Euclidean metric, a
hyperbolic function), since the rotation group that changes the value of a bingle is known. This can be
done by various methods and hence one cannot uniquely recover the method used in the construction

of a k-ingle of k equal vectors. Moreover, in the case of tringles, there are two numbers ρ1 and ρ2, but
even two numbers cannot determine a unique way of construction of an initial triple of vectors from
a triple of equal vectors.

The form of ρ1 resembles the form of a bingle:

ρ1 =
(A1, . . . , Ak)

|A1| . . . |Ak| , |Ai| = (Ai, . . . , Ai)
1/k. (15)

This is because for k = 2 we have θ(k) = 2 and the two formulas coincide.

Actually, if we take all functions satisfying the required conditions (1)–(5), then we can supplement
this by all k-ingles with other symmetric metrics and l-ingles (l �= k) with symmetric metrics of rank l.

We will henceforth consider arbitrary functions of such polyingles.

The Berwald–Moor metric possesses a continuous isometry group I, whereas the isometry groups
of the other symmetric metrics do not contain this isometry group isometry I. Therefore, in this
case, other polyingles become unusable. For other metrics (e.g., for the Chernov metric without a

continuous isometry group) we could significantly expand the class of possible polyingles. In this case,
only the restriction not to use other symmetric metrics except for the initial metric enables us to
restrict ourselves to only these polyingles.

Now we prove some properties of these polyingles.

Lemma 2. Let gij be a symmetric metric of rank 2 all of whose off-diagonal elements are zero. If all
diagonal elements are nonnegative, then the following inequality holds:

(A,B) ≤ (A,A)(B,B),

where

(A,B) =
∑

gijA
iBj.

If

g11 > 0, gii ≤ 0, i > 1,

then for time-like vectors

A1 > 0, B1 > 0, (A,A) > 0, (B,B) > 0,

and also

(A,B) ≥ (A,A)(B,B).
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Proof. Consider the quadratic expression

f(x) = (xA′ +B′, xA′ +B′) = (A′, A′)x2 + 2(A′, B′)x+ (B′, B′),

where

A′i = |Ai|, B′i = |Bi|.
In the first case, the quadratic form is positive-definite and hence the discriminant D = (A′, B′)2 −
(A′, A′)(B′, B′) of the form is nonpositive. Therefore, we have the estimates

(A,B)2 ≤ (A′, B′)2 ≤ (A′, A′)(B′, B′) = (A,A)(B,B).

In the second case, the quadratic form is not positive-definite and hence the discriminant is nonnega-
tive. Therefore,

(A,B)2 ≥ (A′, B′)2 ≥ (A′, A′)(B′, B′) = (A,A)(B,B).

The lemma is proved.

In fact, in this proof we have not used the diagonality of gij . The main thing here is not the positive
definiteness of the corresponding quadratic form, but the existence of x such that (Ax−B,Ax−B) ≤ 0.

Lemma 3. If a metric of rank k is of Lorentz type, then for any positive vectors Ai
l, l = 1, . . . , k, the

following inequality holds:

(A1, . . . , Ak)
2 ≥ (A1, . . . , Ak)(A1, . . . , Ak). (16)

Proof. This lemma immediately follows from the second case of Lemma 2 with using accompanying
metrics.

Lemma 4. Any linear combination of metrics of Lorentz type with positive coefficients is also a metric
of Lorentz type.

This lemma follows directly from the definition.

Lemma 5. Permanent metrics (i.e., metrics subordinated to the Berwald–Moor metric and confor-

mally equivalent to the metric dsk = Πk) are metrics of Lorentz type.

Proof. This lemma is implied by the fact that all accompanying metrics of rank 2 can be represented
as linear combinations with positive coefficients of metrics of Lorentz type.

Lemma 3 implies the following assertion.

Proposition. All k-ingles take values not less than 1 on positive vectors.

Proof. Note that on positive vectors, metrics of Lorentz type satisfy property (16). Therefore, suc-
cessively amalgamating the partition of k into summands, we decrease the product in the geometric

mean.
For simplicity, we illustrate this by examples of tringles and “quadringles.” For tringles, we write

the following property:

(A,B,C)6 ≥ (A,A,C)(B,B,C)(A,B,A)(C,B,C)(A,B,B)(A,C,C).

Raising to the power 1/6 and dividing by |A||B||C|, we obtain the following inequality:

ρ1 ≥ ρ2.

Similarly, we write inequality (16) for six terms:

(A,A,C)2 ≥ (A,C,C)(A,A,A), (B,B,C)2 ≥ (B,C,C)(B,B,B), . . . .
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Multiplying them and dividing the left-hand side by the right-hand side (all terms are positive for

positive vectors), we obtain the inequality

ρ1 ≥ ρ2 ≥ 1. (17)

Further, for k = 4 we enumerate the partitions of 4:

(1) 1 + 1 + 1 + 1;

(2) 2 + 1 + 1;
(3) 2 + 2;
(4) 3 + 1;

(5) 4.

For any of the six variants we write an inequality of the form (16)

(A,B,C,D)2 ≥ (A,A,C,D)(B,B,C,D), . . .

and multiply them; we obtain

ρ1 ≥ ρ2.

Multiplying the twelve inequalities of the form

(A,A,C,D)2 ≥ (A,A,C,C)(A,A,D,D),

we have

ρ2 ≥ ρ3.

Further, multiplying the six inequalities of the form

(A,A,B,B)2 ≥ (A,A,A,B)(A,B,B,B),

we have

ρ3 ≥ ρ4.

Finally, multiplying the six inequalities of the form

(A,A,A,B)4 ≥ (A,A,A,A)2(A,A,B,B)2 ≥ (A,A,A,A)(A,A,A,B)(A,B,B,B),

we obtain the final inequalities for quadringles:

ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4 ≥ 1. (18)

Inequalities for higher k-ingles can be obtained similarly.

Now we consider calculations of k-ingles up to second order of smallness in the case where the
vectors do not greatly differ from the unit vector:

Ai
l = 1 + xil, |xil |  1.

This corresponds to the case of vectors whose spatial coordinates satisfy the inequality

max(|dx|, |dy|, |dz|)  dt,

i.e., vectors corresponding to small velocities (compared to the speed of light):

v  1.

We denote the subordinated second-order metric by gij , the first-order metric by

gi =
∑

j

gij ,

and the zero-order metric by

g =
∑

i

gi.
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The following relations hold:

(A1, . . . , Ak) = g +

k∑

l=1

n∑

i=1

gix
i
l +

∑

1≤l<m≤k

∑

i,j

gijx
i
lx

j
m +O

(
ε3
)
, (19)

and

|Al| =
⎛

⎝g + k

n∑

i=1

gix
i
l +

k(k − 1)

2

∑

i,j

gijx
i
lx

j
l

⎞

⎠
1/k

+O
(
ε3
)

= g1/k

⎛

⎝1 +
1

g

n∑

i=1

gix
i
l +

k − 1

2g

∑

i,j

gijx
i
lx

j
l −

k − 1

2g2

(
∑

i

gix
i

)2
⎞

⎠+O
(
ε3
)
.

Dividing the k-scalar product by the product of norms, we see that k-ingles are identically equal to 1
up to the first order of smallness. This implies the following:

ρ1 = 1 +
1

g

∑

1≤l<m≤k

∑

i,j

gijx
i
lx

j
m − k − 1

2g

∑

l,i,j

gijx
i
lx

j
l

+
k − 1

2g2

∑

l

(
∑

i

gix
i
l

)2

− 1

g2

∑

1≤l<m≤k

∑

i

gix
i
l

∑

i

gix
i
m +O

(
ε3
)
. (20)

Other k-ingles have a similar form. However, only k-ingles calculated up to the second order of
smallness are invariant under Lorentz transforms that preserve subordinated metrics up to the second
order of smallness.

Clearly, the symmetry group of a function calculated with less accuracy is not less than the exact
symmetry group (the exact symmetry preserves approximations of all orders). Therefore, the question
arises, what is the exact symmetry group. To this end, we can calculate k-ingles up to third order

and recognize which symmetries of second order are also symmetries of third order.
However, this approach is too cumbersome. The following approach is simpler. Assume that the

symmetry group G of a certain function is broader than the group K of conformal transformations.

If G contains a certain rotation g (circular or hyperbolic), then it also contains all rotations aga−1 for
any automorphism a of the algebra of polynumbers.

It is easy to show that the minimum group containing the group of Bervald–Moor conformal trans-

formations and elements g and aga−1 is the complete group Gl(n). As was noted above (see Lemma 1),
such a function must be a constant, which contradicts the necessary condition (5) and the definition
of a k-ingle. Therefore, this remark completely solves the problem of polyingles.

It remains to verify that the tringles ρ1, ρ2, . . . introduced above are functionally independent. This
question is intuitively clear, and to prove independence of the tringles mentioned, we restrict ourselves
to subordinated metrics for the Bervald–Moor metrics. In such polynumerical metrics, the scalar

products are calculated as permanents and represent some average values. The k-ingles themselves
represent a certain type of correlation (more exactly, the value reciprocal to the correlation) between
the values of the coordinates. In the case where all coordinates are positive, they are bounded from

below by 1 (the strong correlation) and they are always greater than 1 if the set contains miscellaneous
vectors. Moreover, for positive vectors we can order these k-ingles as follows:

1 ≤ ρp(k)−1 ≤ · · · ≤ ρ2 ≤ ρ1.
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First, we consider the case of H2. As was mentioned above, we obtain in this case the Minkowski

metric

ds2 = dt2 − dx2, dt =
x1 + x2

2
, dx =

x1 − x2
2

.

Therefore, bingles characterize hyperbolic rotations; they are not defined for two arbitrary vectors.
The same situations occurs also for the case k > 2.

Calculating tringles, we can combine one vector C with the unit vector by a conformal transforma-

tion; then the vectors A and B become A′ and B′, respectively, and the tringle can be calculated by
the subordinated scalar product of rank 2:

ρ1 =
(A′, B′, 1)
|A′||B′||1| .

However, the norms in the denominator are calculated by a metric of rank 3, which need not coincide
with the norms in the subordinated metric of rank 2.

Consider the case H3, k = n = 3. We have

ρ1 =
per(x, y, z)

[per(x, x, x) per(y, y, y) per(z, z, z)]1/3
,

ρ2 =
[per(x, x, y) per(x, x, z) per(x, y, y) per(y, y, z) per(x, z, z) per(y, z, z)]1/6

[per(x, x, x) per(y, y, y) per(z, z, z)]1/3
.

To prove the functional independence of these quantities, it suffices to present examples of sets of
vectors for which one quantity is the same whereas the other is not. Consider an arbitrary set of three

vectors x, y, and z one of whose coordinates is equal to 0 and the other two coordinates are positive
numbers. Then 1/ρ1 = 0 for any such sets whereas the quantities of ρ2 can differ, which proves their
functional independence.

The case of the Chernov metric (k = 3, n = 4) is reduced to the previous case if we consider sets of
vectors in which one fixed coordinate is equal to 0.

The case H4, k = n = 4, is reduced to the case H3 if one of the four vectors is E = (1, 1, 1, 1). In
this case, we obtain four types of 4-ingles. One can prove their functional independence and that they

are ordered for sets with positive coordinates.
The question also arises, aren’t elliptic functions used for calculation of tringles for the Berwald–

Moor metric of rank 3? An analysis shows that in this case elliptic functions do not play a key role.

Elliptic functions and the theory of Abelian varieties (in the case where a variety is a commutative
group whose operation is represented by a rational function of coordinates of the summands) are
applicable for the so-called Penrose isotropic cones (see [1, 2, 4, 6, 8–12, 14–27]).
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