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Abstract—In this activity the qualitative analysis
of both plane-parallel and spatial problems of the real
rigid body motions in a resistant medium is fulfilled.
A nonlinear model that describes the interaction of
a rigid body with a medium and takes into account
(based on experimental data on the motion of circular
cylinders in water) the dependence of the arm of the
force on the normalized angular velocity of the body
and the dependence of the moment of the force on
the angle of attack is constructed [1]. An analysis of
plane and spatial models (in the presence or absence
of an additional tracking force) leads to sufficient sta-
bility conditions for translational motion, as one of the
key types of motions. Either stable or unstable self-
oscillation can be observed under certain conditions.

1. Spatial Motion of an Axial Symmetric Rigid
Body in a Resisting Medium

Consider the problem of a spatial motion of homo-
geneous axial symmetric body of mass m. A portion
of its surface is a flat circle disk interacting with a
medium in a jet flow [1, 2, 3]. The other portion of
the body’s surface is inside the volume bounded by the
jet stalling at the disk edge and is not affected by the
medium. Conditions are similar when homogeneous
circular cylinders enter water.

If the above conditions are satisfied, the motions of
the body include translational deceleration similar to
the case of plane-parallel (unperturbed) motion: the
body can undergo translational motion along its axis
of symmetry, i.e., perpendicularly to the disk plane.

We choose the right-hand coordinate system Dxyz
with the Dx-axis aligned with the axis of geometrical
symmetry of the body and the Dy− and Dz−axes
fixed to the disk. The components of the angular
velocity vector Ω in the system Dxyz are denoted
by {Ωx,Ωy, Ωz}. The inertia tensor of the dynam-
ically symmetric body is diagonalized in the body
axes Dxyz: diag{I1, I2, I2}. We will use the quasita-
tionarity hypothesis and assume for simplicity that
R1 = DN is defined at least by the attack angle α
between the velocity vector v of the center D of the
disk and the straight line Dx. Thus, DN = R1(α, . . .).

Moreover, we assume that S = |S| = s1(α)v2, v = |v|.
For convenience, we introduce an auxiliary alternating
function s(α): s1 = s1(α) = s(α)sgn cos α > 0 instead
of the coefficient s1(α). Thus, the pair of functions
R1(α, . . .) and s(α) defines the forces and moments
exerted by the medium on the disk under such as-
sumptions.

Let us use the spherical coordinates (v, α, β1) of the
tip of the velocity vector v = vD of the point D rela-
tive to the flow to measure the angle β1 in the plane
of the disk. Expressing the quantities (v, α, β1), using
nonintegrable relations, in terms of the cyclic kine-
matic variables and velocities and supplementing them
with the projections (Ωx,Ωy, Ωz) of the angular veloc-
ity onto the body axes, we consider them as quasive-
locities.

Using the theorems on the motion of the center of
mass (in the body-fixed frame of reference Dxyz) and
variation in the angular momentum in the same frame,
we obtain the dynamic part of the differential equa-
tions of motion in the six-dimensional phase space of
quasivelocities (σ = DC). The first group of equations
describes the motion of the center of mass, while the
second group the motion around the center of mass

v̇ cosα− α̇v sin α + Ωyv sinα sin β1−
−Ωzv sin α cos β1 + σ(Ω2

y + Ω2
z) = −s(α)v2/m,

v̇ cosα− α̇v sin α + Ωyv sinα sin β1−
−Ωzv sin α cosβ1 + σ(Ω2

y + Ω2
z) = 0,

v̇ sinα cos β1 + α̇v cosα cosβ1−
−β̇1v sin α sin β1 + Ωzv cos α−

−Ωxv sin α sin β1 − σΩxΩy − σΩ̇z = 0,
v̇ sin α sin β1 + α̇v cosα sin β1+

+β̇1v sin α cos β1 + Ωxv sin α cosβ1−
−Ωyv cos α− σΩxΩz + σΩ̇y = 0,

I1Ω̇x = 0,

I2Ω̇y + (I1 − I2)ΩxΩz = −zNs(α)v2,

I2Ω̇z + (I2 − I1)ΩxΩy = yNs(α)v2,
(1)

where (0, yN , zN ) are the coordinates of the point N
in the system Dxyz.
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2. Motion of a Symmetric Body Subject to
Force of Resistance and Tracking Force

Let us consider the class of problems where a rigid
body moves through a medium under a tracking force
acting along the axis of geometrical symmetry of the
body and producing (under some conditions) classes
of motions (imposed constraints) of interest, this force
being the reaction of the constraints imposed. Here,
the tracking force is such that v ≡ const.

The cyclic invariant relation Ωx ≡ Ωx0 = const
holds at all instants of time. In what follows, we will
examine the case where the rigid body does not rotate
about its longitudinal axis, i.e., Ωx0 = 0.

Then the independent dynamic part of the equations
of motion in the four-dimensional phase space is given
by

α̇ cos α cos β1 − β̇1v sin α sin β1+
+Ωzv cos α− σΩ̇z = 0,

(2)

α̇ cos α sin β1 + β̇1v sin α cos β1−
−Ωyv cos α + σΩ̇y = 0,

(3)

I2Ω̇y = −zNs(α)v2, (4)

I2Ω̇z = yNs(α)v2. (5)

Here yN , zN are Cartesian coordinates of the point N
of resisting force application.

System (2)–(5) includes the influence functions yN ,
zN , and s. To determine them qualitatively, we will
use experimental data on the properties of jet flow.

For beginning, we will analyze the system (2)–(5) for
the following influence functions (of S. A. Chaplygin
[1]); such an analysis can be performed for an arbitrary
pair of functions yN , zN , and s, see below:

yN = A sin α cos β1 − hΩz/v,
zN = A sinα sin β1 + hΩy/v,

s(α) = B cosα,

A = ∂yN

∂α |α=0, β1=0 = ∂zN

∂α |α=0, β1=π/2,
B = s(0), h > 0.

(6)

The resultant system will be called a reference one.
The coefficient h in (6) appears in the terms pro-

portional to the rotary derivatives of the moment of
hydroaerodynamic forces (drag) with respect to the
components of the angular velocity of the body.

Projecting the angular velocities onto the moving
axes not fixed to the body so that z1 = Ωy cosβ1 +
Ωz sin β1, z2 = −Ωy sin β1 + Ωz cosβ1 and introduc-
ing dimensionless variables wk, k = 1, 2, and param-
eters by the formulas b = σn0, n2

0 = AB/I2, H1 =
Bh/I2n0, zk = n0vwk, k = 1, 2, (herewith < · >=
n0v <′>), we obtain the following analytic dynamic
system (reference system) of the fourth order:

α′ = −(1 + bH1)w2 + b sin α, (7)

w′2 = sin α cos α− (1 + bH1)w2
1

cos α
sin α−

−H1w2 cosα,
(8)

w′1 = (1 + bH1)w1w2
cosα

sin α
−H1w1 cosα, (9)

β′1 = (1 + bH1)w1
cos α

sinα
, (10)

which includes the independent third-order subsystem
(7)–(9).

If b = H1 then after the change of variables w∗ =
ln |w1|, the divergence of the right-hand side of (7)–(9)
((7)–(10)) will become identically equal to zero, which
allows considering the system(s) to be conservative.

2.1. On Stability of Translational Motion

Let research the stability of key type (unperturbed
motion) with respect to the perturbations of angle
of attack and angular velocity, i.e. to the variables
α, w1, w2. In other words, we research the stability
of trivial solution of independent third order system
(7)–(9).

Consider the following positive definite function in
the phase space of the third-order system (7)–(9):

V (α, w1, w2) = (1 + b2)(w2
2 + w2

1)−
−2bw2 sinα + sin2 α.

(11)

Theorem 1. Function (11) is a Lyapunov
(Chetaev) function for system (7)–(9), i.e., its deriva-
tive by virtue of the system is negative definite for
b < H1 and positive definite for b > H1.

Corollary. The origin of coordinates of system (7)–
(9) (after the right-hand side is redefined at it) is an
attracting singular point for b < H1 and a repulsing
singular point for b > H1.

Note once again that a similar theorem is also valid
for the general system with arbitrary influence func-
tions yN , zN , and s. The asymptotic stability condi-
tion for the origin of coordinates of the system of re-
duced dynamic equations with respect to the variables
(α,w1, w2) remains the same, b < H1.

Indeed, in the more general case where the influence
functions are represented as

yN = R(α) cos β1 − h1Ωz/v,
zN = R(α) sin β1 + h1Ωy/v,

(12)

and the functions R, s satisfy the typical conditions
(function R corresponds to the function y in such
case), the dynamic equations of motion become:

α′ = −w2 + σ
I2n0

F (α)
cos α − σh1

I2
w2

s(α)
cos α ,

w′2 = F (α)
I2n2

0
− w2

1
cos α
sin α−

−σh1
I2

w2
1

s(α)
sin α − h1

I2n0
w2s(α),

w′1 = w1w2
cos α
sin α + σh1

I2
w1w2

s(α)
sin α−

− h1
I2n0

w1s(α),
β′1 = w1

cos α
sin α + σh1

I2
w1

s(α)
sin α ,

(13)
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here F (α) = R(α)s(α).
Consider the function (similar (11))

V (α,w1, w2) = w2
2 +(1+b2)w2

1 +[bw2 − sinα]2 , (14)

that is positive definite in the neighborhood of the ori-
gin.

Theorem 2. Function (14) is a Lyapunov
(Chetaev) function for system (13), i.e., its deriva-
tive by virtue of the system is negative definite for
σR′(0) < h1 and positive definite for σR′(0) > h1.

Corollary. The origin of coordinates of system (13)
(after the right-hand side is redefined at it) is an at-
tracting singular point for σR′(0) < h1 and a repulsing
singular point for σR′(0) > h1.

The asymptotic-stability condition for moving ho-
mogeneous circular cylinders will be satisfied if σk <
hD, where D is the diameter of the cylinder, k and h
are dimensionless influence parameters, and σ is the
distance DC.

3. Motion of a Symmetric Body Subject to
Force of Resistance and Tracking Force. II

In given case, the tracking force is such that the
following condition is satisfied all the time, i.e. VC ≡
const.

The cyclic invariant relation Ωx ≡ Ωx0 = const
holds at all instants of time. In what follows, we will
examine the case where the rigid body does not rotate
about its longitudinal axis, i.e., Ωx0 = 0.

Then the following value has to stand in the right-
hand side of the first equation of the system (1) instead
of −s(α)v2/m and to be equal to zero identically, since
the nonconservative pair of forces will act onto the
body: T − s(α)v2 ≡ 0. Obviously, that it needs to
choose the value of tracking force T in the type T =
T (v, α, Ω) = s(α)v2, T ≡ −S.

Similar to the choose of influence functions, we de-
fine the dynamic functions s, yN , and zN in the types
of (12). Herewith, the additional damping (but in the
certain domains of the phase space and dispersing)
moment of a nonconservative force is present in con-
sidered system as before.

Projecting the angular velocities onto the moving
axes not fixed to the body so that z1 = Ωy cosβ1 +
Ωz sin β1, z2 = −Ωy sin β1 + Ωz cosβ1 and introduc-
ing new dimensionless phase variables and differentia-
tion by the formulas zk = n0vZk, k = 1, 2, < · >=
n0v <′>, system (1) will lead to the following type:

v′ = vΨ1(α, Z1, Z2), (15)

α′ = −Z2 + µ2(Z2
1 + Z2

2 ) sin α+
+ σ

I2n0
F (α) cos α− σh1

I2
Z2s(α) cos α,

(16)

Z ′2 = F (α)
I2n2

0
− Z2Ψ1(α, Z1, Z2)−

−Z2
1

cos α
sin α − σh1

I2
Z2

1
s(α)
sin α − h1

I2n0
Z2s(α),

(17)

Z ′1 = −Z1Ψ1(α, Z1, Z2) + Z1Z2
cos α
sin α +

+σh1
I2

Z1Z2
s(α)
sin α − h1

I2n0
Z1s(α),

(18)

β′1 = Z1
cosα

sin α
+

σh1

I2
Z1

s(α)
sin α

, (19)

where

Ψ1(α,Z1, Z2) = −µ2(Z2
1 + Z2

2 ) cos α+

+
σ

I2n0
F (α) sin α− σh1

I2
Z2s(α) sin α,

and analytical system of equations in the case of Chap-
lygin influence functions (6):

v′ = vΨ1(α,Z1, Z2), (20)

α′ = −Z2 + µ2(Z2
1 + Z2

2 ) sin α + µ2 sin α cos2 α−
−µ2µ3Z2 cos2 α, (21)

Z ′2 = sin α cos α−Z2Ψ1(α, Z1, Z2)−(1+µ2µ3)Z2
1

cos α

sin α
−

−µ3Z2 cos α, (22)

Z ′1 = −Z1Ψ1(α,Z1, Z2) + (1 + µ2µ3)Z1Z2
cos α

sin α
−

−µ3Z1 cos α, (23)

β′1 = (1 + µ2µ3)Z1
cosα

sin α
, (24)

where

Ψ1(α, Z1, Z2) = −µ2(Z2
1 +Z2

2 ) cos α +µ2 sin2 α cos α−

−µ2µ3Z2 sin α cosα,

herewith, we will choose the dimensionless parame-
ters b = µ2, H1 = µ3 as follows: b = σn0, n2

0 =
AB/I2, H1 = Bh1/I2n0 as above.

The equations (16)–(19) of the system (15)–(19)
form the independent fourth order subsystem, and the
equations (16)–(18) the independent third order one.

3.1. On Stability of Translational Motion

Let research the stability of key type (unperturbed
motion) with respect to the perturbations of angle
of attack and angular velocity, i.e. to the variables
α, Z1, Z2. In other words, we research the stability
of trivial solution of independent third order system
(16)–(18).

Proposition 1. The plane

{(α,Z1, Z2) ∈ R3 : Z1 = 0} (25)

is integral one for the system (16)–(18).
Furthermore, two remaining equations on α, Z2 form

the system describing plane-parallel rigid body dy-
namics (see above) after formal substitution Z1 = 0
in the system (16)–(18).
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Thus, the phase pattern from the plane dynamics
”packs” into the plane (25). Furthermore, the plane
(25) separates three-dimensional phase space on two
parts:

{(α, Z1, Z2) ∈ R3 : 0 < α < π, Z1 > 0} (26)

and

{(α, Z1, Z2) ∈ R3 : 0 < α < π, Z1 < 0}, (27)

in each of which the motion occurs by itself. But it
is not arbitrarily from each other, since the following
symmetry is present in the system:

i) α- and Z2-components of vector field of the sys-
tem (16)–(18) do not change the signs under the sym-
metry 


α
Z1

Z2


 →




α
−Z1

Z2


 (28)

relatively the plane (25);
ii) Z1-component of vector field of the system (16)–

(18) changes the sign under the symmetry (28) rela-
tively the plane (25).

The latter facts state that it is sufficiently to re-
search the system (16)–(18) in semibounded shell (26),
although it is not the valid phase space.

The possibility of use of the function

V1(α, Z1) = Z1 sin α (29)

as Lyapunov (Chetaev) function in semibounded shell
(26) is the important effect of latter remarks, since
given function is positive defined in it.

Theorem 3. Function (29) is a Lyapunov
(Chetaev) function for system (16)–(18), i.e., its
derivative by virtue of the system is negative definite
for µ2 < µ3 and positive definite for µ2 > µ3.

Corollary. The origin of coordinates of system
(16)–(18) (after the right-hand side is redefined at it)
is an attracting singular point for µ2 < µ3 and a re-
pulsing singular point for µ2 > µ3.

In particular, the similar theorem is valid and for the
systems (21)–(23), considered for influence functions
(6) of Chaplygin.

Let consider the function (similar (11))

V (α,Z1, Z2) = Z2
2 +(1+ b2)Z2

1 +[bZ2 − sinα]2 , (30)

which is positive defined in a vicinity of the origin.
Theorem 4. Function (30) is a Lyapunov

(Chetaev) function for system (16)–(18), i.e., its
derivative by virtue of the system (16)–(18) is negative
definite for µ2 < µ3 and positive definite for µ2 > µ3.

Corollary. The origin of coordinates of system
(16)–(18) (after the right-hand side is redefined at it)
is an attracting singular point for µ2 < µ3 and a re-
pulsing singular point for µ2 > µ3.

The asymptotic-stability condition for moving ho-
mogeneous circular cylinders will be satisfied if σk <
hD, where D is the diameter of the cylinder, k and h
are dimensionless influence parameters, and σ is the
distance DC.

4. Conclusions

The experiment on the motion of homogeneous cir-
cular cylinders in water conducted at the Research In-
stitute of Mechanics of the Lomonosov Moscow State
University confirmed that in modeling the influence of
a medium on a rigid body, it is necessary to introduce
an additional parameter to account for dissipation in
the system.

In studying the deceleration of a body with finite
angles of attack, a key task is to establish the con-
ditions under which self-oscillations occur in a finite
neighborhood of translational deceleration. Thus, a
comprehensive nonlinear analysis is of necessity.

The initial stage of such an analysis is neglecting
the damping effect of the medium. This corresponds
to the assumption that the pair of dynamic functions
describing the influence of the medium depends on a
unique parameter (angle of attack). The dynamic sys-
tems resulting from such a nonlinear description be-
have as systems with variable dissipation. Therefore,
it is necessary to develop a procedure for analyzing
such systems. Since experimental data on the proper-
ties of jet flow is used, there is some scatter in forces
and moments characteristics in the qualitative descrip-
tion of the body-medium interaction. This makes it
natural to define relative robustness and to prove such
robustness for the systems under study.
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