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Abstract—Study of the dynamics of a multidimensional solid Il. PRELIMINARY
depends on the force-field structure. As reference results, we
consider the equations of motion of low-dimensional solids in ~ The activity presents the review of both earlier obtained
the field of a medium-drag force. Then it becomes possible to and also new cases of integrability in two-, three-, and four-
generalize the dynamic part of equations to the case of the motion gimensional rigid body dynamics in a nonconservative force

of a solid, which is multidimensional in a similarly constructed . . . .
force field, and to obtain the full list of transcendental first field. The problems studied are described in terms of so-called

integrals. The obtained results are of importance in the sense ZE€r0 mean variable dissipation dynamic systems.
that there is a nonconservative moment in the system, whereas Therefore, we study nonconservative systems for which the

it is the potential force field that was used previously. methods for studying, for example, Hamiltonian systems is
Index Terms—Case of integrability, dynamic part of motion not applicable in general. Therefore, for such systems, it is
equations, multidimensional rigid body. necessary, in some sense, to "directly” integrate the main

equation of dynamics. We generalize old cases and also obtain
new cases of complete integrability in transcendental functions
|. INTRODUCTION in two-, three-, and four-dimensional rigid body dynamics in
a nonconservative force field.
T HIS activity presents itself the review of either obtained of course, in the general case, it is sufficiently difficult to
earlier or new cases of integrability in Dynamics of tWogonstruct some theory of integrating nonconservative systems
dimensional, three-dimensional, and four-dimensional rig'@ven of low dimension). But in a number of cases where the
body being in a nonconservative field of forces. The studiggstems considered have additional symmetries, we succeed in
problems are described in terms of dynamic systems with $fiding first integrals through finite combinations of elemen-
called variable dissipation with zero mean. tary functions [1].

The problem of research of complete choice of transcendenye optain a whole spectrum of complete integrability
tal first integrals of the systems with dissipation is rather actugdses for nonconservative dynamical systems having nontrivial
too, and majority of scientific activities was dedicated 0 isymmetries. Moreover, in almost all cases, each of the first in-
New class of dynamic systems having the periodic coordingiyrals is expressed through a finite combination of elementary
is introduced in consideration. Due to the presence in SUgfhctions, being one transcendental function of its variables.
systems the nontrivial groups of symmetries it was shown th this case, the transcendence is understood in the complex
the considered systems possess the variable dissipation wifalysis sense, when after continuation of given functions to
zero mean that means the dissipation in the system is equajf@ complex domain, they have essentially singular points.
zero for the period on available periodical coordinate, althougthe |atter fact is stipulated by the existence of attracting
both the sop of energy and its dissipation can be present in gy repelling sets in the system (for example, attracting and
different domains of the phase space of the system. On the bagga|ling foci).
of obtained material the dynamic systems arising in DynamicS\ye discover new integrable cases of motion of a rigid body,
of a rigid body were analyzed. As the result the series gic|yding that in the classical problem of motion of a spherical

the cases of complete integrability of the motion equations P’éndulum in an over-run medium flow.
terms of transcendental functions and expressing through th

fini binati t ol ¢ . i fn [1], [2], [3], [4] we study the general aspects of inte-
inite_combination of elementary functions were discovere rability of so-called variable dissipation dynamic systems.
The certain generalizations on the conditions of integrabili

or the beginning we give the visual characteristic of those

of more general classes of nonconservative dynamic systefi§yems. Therefore, in this case, we will speak of systems with
(Dynamics of four-dimensional rigid body) were obtained. ¢ yariaple dissipation, where the term "variable” refers not

to the value of the dissipation coefficient, but to the possible
January 18, 2014 ajternation of its sign (therefore, it is more reasonable to use
the term sign-alternating).
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systemsWe show that offered class of systems are embeddigdm dynamics of the real rigid bodies interacting with a
to the class of zero mean variable dissipation systems i®sisting medium on the laws of a jet flow, under which the
natural way, i.e., on the average, for the period of the existimpnconservative tracing force acts onto the body, and it either
periodic coordinate, the sop and diffusing to energy balanfices the value of the velocity of a certain typical point of
to each other in certain sense. We offer the examples tbe rigid body to remain as constant in all time of motion,
pendulum-like systems on lower-dimension manifolds frotthat means the presence in system of nonintegrable servo-
dynamics of a rigid body in a nonconservative field of forceonstraint, or forces the center of mass of the body to move
[1], [5]. rectilinearly and uniformly in all time of motion, that means
In [1], [6] we study the certain general conditions of intethe presence in system of nonconservative pair of the forces.
grability in elementary functions for the systems both on two- Therefore, in [10], [11], [12] three additional transcendental
dimensional planes and the tangent bundle of one-dimensiofidt integrals expressing through the finite combination of
sphere (i.e., two-dimensional cylinder), and two-dimensionalementary functions are found to having analytical invariant
sphere (the four-dimensional manifold). Therefore, we offeelations (nonintegrable constraint and the integral on the
the interesting example of three-dimensional phase patternegfuality to zero one of the component of angular velocity), and
pendulum-like system which describes the motion of spheridgal[11], [12], [13] the same was made to having analytical first
pendulum, placed in an over-run medium flow [1], [5], [6]. integrals (the square of the center of mass and the integral on
Since we present the cases of complete integrability the equality to zero one of the component of angular velocity)
spatial rigid body dynamics of the motion in a nonconseonly.
vative field, we deal with three (at first thought) independent In [1] we declare the general aspects of dynamics of multi-

properties: dimensional rigid body, i.e., the notion of angular velocity
i) the distinguished class of systems with the symmetrigansor, the joint dynamic equations of the motion on direct
above; productR™ x so(n), the Euler and Rivals formulas in multi-

ii) the fact that this class of systems consists of systemignensional case.
with zero mean variable dissipation (in the having periodic The question on tensor of inertia of four-dimensional (4)D
variable), which allows us to consider them as "almostigid body is considered. In this activity it is proposed to study
conservative systems; two possible cases logically on principal moments of inertia,

iii) in certain (although lower-dimensional) cases, thes$e., when there existiwvo relations on the principal moments
systems have the complete tuple of first integrals, which ao&inertia:
transcendental in general (from the viewpoint of complex (i) when there existhreeequal principal moments of inertia
analysis). Iy = I3 = 1y);

In [1] the obtained results are systematized on study of (¢i) when there existwo pairsof equal moments of inetria
the dynamic equations of the motion of symmetrical twaid;, = I, I3 = I).
dimensional (2>-) rigid body which residing in a certain In [12], [13], [14] the obtained results are systematized on
nonconservative field of the forces. Its type is unoriginatudy of the dynamic equations of the motion of symmetrical
from dynamics of the real rigid bodies interacting with dour-dimensional (45-) rigid body which residing in a certain
resisting medium on the laws of a jet flow, under which theonconservative field of the forces for the césg Its type is
nonconservative tracing force acts onto the body, and it eitt@so unoriginal from dynamics of lower-dimensional real rigid
forces the value of the velocity of a certain typical point obodies interacting with a resisting medium on the laws of a
the rigid body to remain as constant in all time of motiorjet flow, under which the nonconservative tracing force acts
that means the presence in system of nonintegrable sergato the body, and it either forces the value of the velocity of
constraint, or forces the center of mass of the body to mosecertain typical point of the rigid body to remain as constant
rectilinearly and uniformly in all time of motion, that meansn all time of motion, that means the presence in system of
the presence in system of nonconservative pair of the foraasnintegrable servo-constraint, or forces the center of mass of
(see also [6], [7]). the body to move rectilinearly and uniformly in all time of

Therefore, in [1] the additional transcendental first integrahotion, that means the presence in system of nonconservative
expressing through the finite combination of elementary funpair of the forces.
tions is found to having analytical nonintegrable constraint, Therefore, in [13], [14], [15] four additional transcendental
and in [8], [9], [10] the same was made to having analyticdirst integrals expressing through the finite combination of
first integral (the square of the center of mass) only. elementary functions are found to having four analytical

New obtained results are systematized and given in invariamgariant relations (nonintegrable constraint and three integrals
form. Herewith, the additional dependence of the moment oh the equalities to zero some of the components of angular
the nonconservative force on the angular velocity is intreelocity tensor), and in [14], [15], [16] the same was made to
duced. The given dependence can be wide-spread and onhtéreing four analytical first integrals (the square of the center
cases of the motions in the spaces of higher dimensions. of mass and three integrals on the equalities to zero some of

In [1], [11] the obtained results are systematized on studlye components of angular velocity tensor) only.
of the dynamic equations of the motion of symmetrical three- The results are pertained to the case when all the interaction
dimensional (3D-) rigid body which residing in a certain of a medium with the body is concentrated on that part of
nonconservative field of the forces. Its type is also unorigintlle body surface that has the form of three-dimensional disk,
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TABLE | dependence of the force field on the components of angular
CLASSIFICATION OF THE CASES OF INTEGRABILITY FROI\Q V8|0City tensor iS present (or iS absent) in the System.
TWO-DIMENSIONAL SYMMETRIC RIGID BODY DYNAMICS IN E< TO . . . .
FOUR-DIMENSIONAL DYNAMICALLY SYMMETRIC RIGID BODY DYNAMICS The sign® means that the case is placed to this review.
INE* Two signso in the right below corner of the table mean
- - - — that these two cases are not placed to this review (indeed, this
Dimension ConstraintCondition activity is devoted to the casg = I», Is = I, only).
of aRigid Body | w=const(fz =cons) | Vo = const Nevertheless, the corresponding results have already ob-
E? h=0& h=0& tained for the casé, = ... = I,, of symmetricn-dimensional
h#0® h#0® rigid body, and those results are not also placed to this review.
E3 h=0® h=0® Many results of this work were regularly reported at nu-
(I2 = I3) h#0& h#0® merous workshops, including the workshop "Actual Problems
E4 h=0a h=0a of Geometry and Mechanics” named after professor V. V.
(I = Is = 1) h0® h£0® Trofimov led by D. V. Georgievskii and M. V. Shamolin.
E4 h=06 h=006
(Ii =1z, I3 =14) h#0® h#06 I1l. CASES OF INTEGRABILITY CORRESPONDING TO A

RIGID BODY MOTION IN FOUR-DIMENSIONAL SPACE

In this section the new results are systematized on study of
her@Vith, the force interaction is concentrated in the direCtiOﬂhe equations of the motion of dynamica”y Symmetrica] four-
which is perpendicular to this disk. These results are systefimensional (43-) rigid body which residing in a certain
atized and given in invariant form. Herewith, the additionaionconservative field of the forces in the case of special
dependence of the moment of the nonconservative force @hamical symmetry. Its type is unoriginal from dynamics of
the angular velocity is introduced. The given dependence @@ real lower-dimensional rigid bodies of interacting with a
be wide-spread and on the cases of the motions in the spag&sting medium on the laws of a jet flow, under which the
of higher dimensions. nonconservative tracing force acts onto the body and forces

In this activity the obtained results are systematized on stuggth the value of the velocity of a certain typical point of the
of the dynamic equations of the motion of symmetrical foufigid body and the certain phase variable to remain as constant
dimensional (4D-) rigid body which residing in a certain in all time, that means the presence in system of nonintegrable
nonconservative field of the forces for the cd$a. Its type servo-constraints.
is also unoriginal from dynamics of lower-dimensional real Previously, in [1], the author showed the complete inte-
rigid bodies interacting with a resisting medium on the lawgrability of the equations of body planeparallel motion in
of a jet flow, under which the nonconservative tracing forcg resisting medium under the conditions of streamline flow
acts onto the body, and it forces both the value of the velocif¥ound when the system of dynamical equations has a first
of a certain typical point of the rigid body and the certaifhtegral that is a transcendental (having essentially singular
phase variable to remain as constant in all time, that meagisints in the sense of the theory of functions of one complex
the presence in system of nonintegrable servo-constraints.yariable) function of quasi-velocities. At that time, it was

Therefore, in this activity two additional transcendental angssumed that the interaction of the medium with the body
three analytical first integrals expressing through the finite concentrated on the part of the body surface that has the
combination of elementary functions are found to having fodérm of a (one-dimensional) plate.
analytical invariant relations (two nonintegrable constraints | ater on, in [2], [5], [18], the plane problem was generalized
and two integrals on the equalities to zero some of thg the spatial (three-dimensional) case where the system of
components of angular velocity tensor). dynamical equations has a complete tuple of transcendental

The results which are obtained now are pertained to tfigst integrals. It was assumed here that the whole interaction
case when all the interaction of a medium with the body isf the medium and the body is concentrated on a part of the
concentrated on that part of the body surface that has thedy surface that has the form of a plane (two-dimensional)
form of two-dimensional disk, herewith, the force interaction idisk.
concentrated in two-dimensional plane which is perpendicular|n this section the results which are obtained now are
to this disk. These results are systematized and given gartained to the case when all the interaction of a medium
invariant form. Herewith, the additional dependence of thgith the body is concentrated on that part of the body surface
moment of the nonconservative force on the angular veloCiiyat has the form of two-dimensional disk, herewith, the force
is introduced. The given dependence can be wide-spread giigraction is concentrated in two-dimensional plane which is
on the cases of the motions in the spaces of higher dimensigfsrpendicular to this disk. These results are systematized and

And so, in [16], [17], [18] the cases of integrability in lower-given in invariant form. Herewith, the additional dependence
and multi-dimensional dynamics of a rigid body placed in af the moment of the nonconservative force on the angular
nonconservative force field. To systemize we shall place all @élocity is introduced. The given dependence can be wide-
them to the following table. spread and on the cases of the motions in the spaces of higher

The notificationsh = 0 (or h # 0) mean that the dimensions.
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IV. MORE GENERAL PROBLEM OF THE MOTION WITH THE +0(wg + wi + wi) cosy + o (waws + waws) sin y+
TRACING FORCE o S,
Let consider the motion of a homogeneous dynami- TowesImy = ®)
cally symmetric rigid body with "the front end-wall” (two-
dimensional disk interacting with a medium which filling the
four-dimensional space) in the field of forEf the resistance  —wsv cos asin By + w4v cos a cos By — w1 v sin asin B+
under the conditions of quasistationarity.

Let (v, a, B2, 41) are the coordinates of the vector velocity
of a certain typical pointD of a rigid body ( is the center —0owWs siny — owy cosy = 0, (6)
of two-dimensional disk) such that is the angle between the
vectorvp and the planez;zs, (- is the angle measured in
the planeDx1z2 up to the projection of the vectarp on the .y cos arsin B2 — wov cos a cos By + wyv sin v cos B —
planeDzx x4, 3, is the angle mesured in the plafkrzz, up

vsinacos 31 + v cos acos B — Brvsin asin By —

+0o(wiws — wiws) siny — o(wsws + wiws) cOsy—

vsinasin B + &v cos acsin B + Blv sin «v cos 31+

to the projection of the vectorp on the planeDxsxy, —0(waws + wiws) siny + o (wswe — wiws) cos Y+
0 —ws ws —ws +ows siny 4+ owsy cosy = 0, @)
W 0 -—ws w where
= —ws Wy 0 —w S =s(a)? o=CD, v>0. (8)
w3  —w2  wp 0 Later on, the auxiliary matrix for the calculation of the

. . . moment of the resisting force has the form
is the angular velocity tensor of the bodVx,zox324 is the g

coordinate system related to the body, herewith, the straight 0 0 a3y wan
line CD lies in the planeDz; x5 (C is the center of mass), and S Sy 0 0 ’ ©)
the axesDzxs, Dxy lie in the disk pIane[l, IL=1, I3, I, = . ) .
I;, m are the inertia—mass characteristics. then those part of the dynamic equations of the body motion

Let accept the following decompositions in the projectiondhich describes the body motion around the center of mass,
on the axes of the coordinate systddw;zoz374: and corresponds to the Lie algebra so(4), has the form:

()\4 -+ )\3)(.:}1 + ()\3 — )\4)(&)30)5 + LUQLU4) = 07 (10)
()\2 + )\4)&)2 + ()\2 — )\4 w5w6 — w1w4)

DC = {osin~y, —o cos~, 0,0},

vp = {vcosasin By, v cos a cos s,

vsin acos 1, v sin asin By }. D) = —T4N (aaﬂ17ﬂ27 ) Jv? cos 7, (11)
Herewith, in our case the decomposition will be also correct (M + M) + (Mg — A (wowe + wiws) =
for the function of a medium interaction on four-dimensional 0
body: — oy (0o ) slasiny. (12)
S= {517527030}3 (2) v
herewith Az + Xo)ws + (A2 — A3)(wswe + wiws) =
Q
S1 = Ssiny, Sy = —Scosy, v=const (©) = T3N (avﬂlaﬁ% v) U €os 7, (13)
i.e. in this caseéF = S, and the angle/ is measured in the (A1 + A3)ws + (A3 — A1) (wawg — wiws) =
plane Dz x-.
Then those part of dynamic equations of the body motion = T3N (a,ﬁhﬂz, Q) )2 sin v, (14)
(including and in the case of Chaplygin analytical functions, v
see below) which describes the center of mass motion and (A1 4 Xa)as + (A — A2)(waws + wows) = 0. (15)
corresponds to the spa®* under which the tangent forces ) ) ] )
to three-dimensional disk are absent, has the form: Thus, the following direct product of four-dimensional
) manifold on the Lie algebra so(4$ the phase space of the
v cos arsin By — dw sin asin fy 4 G20 cos acos o — tenth order system (4)—(7), (10)—~(15):
—Wweg €oS (. cos B2 + wxv sin a cos 31 — w3v sin asin 31 — R! x S% x so(4). (16)
—0 (W2 + w? 4 w3) siny — o(waws + wows) cos Y+ We notice right now that the system (4)—(7), (10)—(15), by
g virtue of the having dynamical symmetry
. 1
== 4
towecosy = @) L =1y, I3 =14, (17)
i cos ovcos B — dwsinacos Ba — Fav cos avsin Ba+ possesses the cyclic first integrals
4wgv cos asin B — w4 v sin avcos B + wov sin asin B+ w1 = w? = const wg = wg = const (18)
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Herewith, hereinafter we shall consider the dynamics of the

system on zero level:

0 _
Wy =

wd=0. (19)

And if there exists the more general problem of the bo
motion with the certain tracing forc&, which acts on the
plane Dxqx2 and providing the fulfilment of the following
equalities in all time of the motion

v = const By = const (20)
that in the system (4)—(7), (10)—(15) the values
Ty + 51, To+ 52 (21)

will stand instead off, and F; accordingly.
As a result of corresponding value choi€eof the tracing

force it is possible to obtain formally the fulfillment of the
equalities (20) in all time of the motion. Really, if we expres

formally the valuel™ by virtue of the system (4)—(7), (10)—(15
we shall obtain forcos a # 0:

Ty =T p2(a, £1,9Q) =
= —mo (w2 + w3)siny — mo(waws + waws) cos Y+
+mwsv sin a cos [y cos> B — mwsv sin asin By cos® Bo+
+mwyv sin a cos (1 sin By cos B —
—muwav sin a sin By sin By cos B — s(a)v2 X

mo  sino

Q
i 'AU 9 y T ) 22
I —&-I?,Cosozsmﬂ2 P2 (oz & v)} (22)
Ty =Ty p2(c, 31,9Q) =

= mo(w? + w2) cosy + mo(wiws + wows) siny—

X |siny —

—mwa sin a cos f sin? By + mwqv sin a sin f sin? Fo—

—mwsv sin a cos By sin Po cos Bo+

2

+mwsv sin asin By sin G2 cos [y + s(a)v”x

mo  sino

X |:COS’Y — COSﬁQ . Av,ﬁfz (aa/Blv i}z):| ) (23)

I + I cos o

where

Q Q
Av,[)’z <a761a ’U) = T3N <a7ﬂlaﬁ27 U) COoSs ﬁl+

v (01,00, ) sini (24

The conditions (18)—(20) are used at the obtaining of t
equalities (22) and (23).

+w4v cOos a coS B — owWs Siny — oWy cosy = 0, (25)
Qo cos asin 81 + Blv sin . cos (31 + w3v cos o sin Py —
—wa oS ax €os B2 + oWz sin~y + owsy cosy = 0, (26)
dy Q ,
(I1 + I3)dwe = —z4n (Ol?ﬁl»ﬁz, v) s(a)v”cosy, (27)
. Q 2 .
(I1 + I3)ws = —x4n | @, B, P, " s(a)v®siny,  (28)
. Q 2
(I1 + I3)ws = 237 | @, B1, P2, " s(a)v®cosy,  (29)
. Q2 2 .
(It + I3)ws = x3n | @, B1, Po, " s(a)v®siny,  (30)

in which the parameters, 3, are added to the constant
Earameters specified above.

) . . .
A. Two systems of the discourses on integrability

Remark (on analytical first integrals). Obviously that

the system (25)—(30) possesses two analytical first integrals
which are expressed in terms of the finite combination of the
elementary functions:

(1)
(32)

First of all this means that the system (25)—(30) can be reduced
to the fourth order system on its own four-dimensional phase
manifold.

Hereafter, it makes possible to develop by the following
ways under the study of the system (25)—(30) (i.e. to accept
the following systems of the discourses).

I. In first, it makes possible "not to notice” the existence
in the system the first integrals of the forms (31), (32). Then
conducting the series of the equivalent transformations it can
possible try to reduce the investigated system (25)—(30) to the
equivalent system in which the reduction to the systems of
lower dimensionality will occur. Herewith, it is sufficient to
get the quantity of the independent first integrals smaller then
previous one on two units for the complete system integration,
by virtue of (31), (32).

Il. In second, it makes possible to use the first integrals
(31), (32) expressing two interested phase variables from the
list wo, w3, wy,ws. Herewith, we shall get just the fourth order
system as the system which is the reduction of the system
H5)—(30) to the certain four-dimensional phase manifold.

In the beginning we shall choose the system of the dis-

ws siny — w3 cosy = W, = const

wy siny — ws cosy = W4 = const

It makes possible to look at this procedure from two posfurses. _ _

tions. In first, the transformation of the system has occurredR€2lly, the system (25)—(30) is equivalent to

at presence of the tracing (control) force in the system whig}y, cos o — wsv cos a cos B; sin Ba + wav cos a cos By cos Ba+
provides the consideration of interesting classes of the motion
(20). In second, it makes possible to look at this like the
procedure which allows to deflate the system. Really, the
system (4)—(7), (10)—(15) as a result of that action generates
an independent system of the sixth order of the following type:

4w3v cos asin By sin B2 — wov cos asin Gy cos B —
oWs sin 7y cos 31 — 0wy cos 7y cos B1+

“+ows sinysin B + ows cosysin B = 0, (33)

Qv cos acos 31 — Blv sin asin 7 — wsv cos asin Po+ Blv sin a 4+ w3v cos a cos B sin Py — wov cos a cos (31 cos Bo+
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+wsv cos asin By sin By — w4 cos a:sin Py cos Pao+
+0Ws siny cos B1 + ows cosy cos B1+

+0Ws siny sin B1 + 0wy cosysin G = 0,

2 Q
TAN <a7617623 U> S(Oé) COs 7y,

Wy = —

L+1s
2 Q
w3 A AL <a,,6’1,52, v) s(a) siny,
Wy = 111}:13131\; <a,ﬂl,62, ?) s(«@) cosy,
2 Q
Wy = ngj\[ (a,ﬂl,ﬁg, v) s(a) siny,

Let introduce new quasivelocities in the system. We shall
transform the valuess, w3, wy, ws by means of the composi-

tion of the following rotations for this:

[ )-men ()
—Z9 Ws

( _224 > =T.(~fh) < ZZ >7
where .

n = e )
and also

< Z; ) =T, (B2) ( 2 >»
( " ) :T*(—@)( o )

Thus, the following relations are correct:
21 = wsg cos 1 + ws sin Oy,
2o = w3 sin 1 — ws cos (1,
23 = Wy €OS 31 + wy sin By,
z4 = wo sin B — wy cos Oy,
w1 = —2z1 sin B2 + z3 cos fs,
wo = 23 sin (o + 21 cos P,
w3 = 29 8in By — 24 cos Ps,
Wy = 24 8in B + 25 cos Ba.

As is seen from (33)—(38), on the manifold

(34)

(39)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

Oy = {(04,517w27w37w47w5) €ERS: a= Ik, ke Z}

it is impossible to resolve the system uniquely relatively

to &, f;. Thus, the violation of the uniqueness theorem is %2
happened on the manifold (43) formally. Moreover, in first,
the indefiniteness is happened for even or édty the reason

of degeneration of the coordinat€s, «, 51, 32) which are
parameterized the three-dimensional sphere (but are not the
classical spherical coordinates), and, in second, it is happened®¥1 |1
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the evident violation of the uniquiness theorem for okld

because of the first equation of (33) degenerates for this case.
Really, Jacobian of the transformation, zs, z3, 24 —

v, a, B, B2

T1 = vcosasin Fo,

Lo = v COS ( COS fa, (a4)

r3 = vsinacos Oy,
T4 = vsinasin Fq

is equal to

v3 cos asin a,

in what it differs from Jacobian of the transformation under the
transition to the generalized spherical coordinates, 51, 32,
which, in turn, is equal to

v3 sin asin 3.

It follows that the system (33)—(38) outside of and only
outside of the manifold (43) is equivalent to the system

. ov  s(a) Q
S : b 45
« w3 + Il + 13 COS (v B2 <a7ﬁ1a ’U) ) ( )
. v?
Z4:—I1+135(04)COS’}/ .85 (a 51, )—i—
cos ov  s(a)
t2s {wlsina "I+ sina To,52 <a A, )]’ (46)
v? Q
3 = . Hv ) P
z3 I +133(04) cos7y B2 (a B v)
cos ov  s(a)
T [wlsina _Il—i-Igsina o5, (a P )]’ (47)
. v? .
2o 7 +I3s(a) siny - Ay 8, (a 01, >
COS o ov  s(a) Q
2 [wlsina_llJrIgsinoz. "62< ’ﬁl’v)]’ (48)
. v? .
7= Il+138(a)smv vﬁz( , B1, )
cos a ov  s(a) Q
- - : Hv 9 s ) 49
2 {wlsina I + I sina P2 (a = v)] (49)
. cosa ov  s(a) Q
= sina I + I3sina lo.s, (a’ﬁl’ v) » (50)
or finally
) ov  s(a) Q
= - : A’U ) sy | 51
@ w3+11+13coso¢ 'ﬂ2<aﬁ1 v) (51)

2

Wy —Ilj_Igs(oz) sin(B2 +7) - Ay g, (a B, ?)
[‘Ulsz - Il(flg :i(nao)z Mo, < P )] » (52)

w3 = Iqujgs(a) cos(B2 +7) - Ay g, < , B, SZ)
{Zij—hfhiﬂ' &(a&v)y<%>
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2 .
Wo = 7 jS-f s(a)sin(B2 +7) - I, g, (a, B, Q) - = mo(wi + w3) cosy + mo(wiws + wows) siny—
1 3 v
—mw,v cos B sin? By + mwov sin By sin? By —
cos & ov  s(a) Q 54
TWa W T I, + I3sina I 5, | @, B, K (54) —mwsv cos (1 sin (B3 cos P2 + mwsv sin B sin B2 cos B2 —
mo
2 Q —v?———cos B - L, 61
= sl cos( 4 0) T (0, )+ T e
Il + .[3 v .
wherethe values ofus, w3, ws, ws are arbitrary.
Cos (v ov  s(a) Q On the other hand, if we make the rotation around a certain
+ws w1 — - N : Hv.ﬂz «, ﬂlv - ’ (55) . H : :
sina I} + I3 sina v point W by means of the tracing force it will be necessary to
choose the projections of the tracing force in the form of
: cos o ov  s(a) Q
= sina I + I3 sina oy | @ B v/’ (56) ™ mu?
11 T=T (5.61,5.9) = 2, (62)
where 01
2
Q Q - ’/T - muv
Hv.ﬂ2 <O‘aﬂ17 ’U) = —T4N (aa/Blv U) COoS 61+ = T2 (5761762’ Q) o R02 ’ (63)

0 where Ry1, Rge arethe projections of the cut'IW onto the
43N (a,ﬁl, ) sin G1, (57) corresponding axes of the coordinates.

v The equalities (22), (23) and (62) (63) define, generally
andthe functionA, s, (a, 31,Q/v) is represented in the form speaking, the different values of the tracing foficéor almost
(24). all the points of the manifold (43), and that is proved the

Hereafter, the dependence on the groups of the vasiditable remark.
ables (a,f1,02,Q/v) is understood like the compli-
cated dependence ofw, (1, 32, 21 /v, 22/v, 23/v, 24/v) (OF V. CASE OF THE ABSENCE OF THE DEPENDENCE OF THE
(o, B1, B2, w1 /v, wa /v, w3 /v, ws/v)) by virtue of (42). MOMENT OF THE NONCONSERVATIVE FORCES ON THE
The violation of the uniqueness theorem is happened for the ANGULAR VELOCITY
system (33)—(38) on the manifold (43) for oddn following 5 Reduced system
sense: the regular phase trajectory of the system (33)—(38)5_ . . ) .
passes through nearly any point from the manifold (43) for odd >Milarly to the choice of the Chaplygin analytical func-
k intersecting the manifold (43) under right angle, and ald{PnS: we shall accept the dynamic functionsesy andzy
there exist the phase trajectory which coincides completely the following form:

with the specified point in all moments of time. But those are s(a) = Beosa, A,B>0, v#0,

the different trajectories physically since the different values

of the tracing force correspond them. Let show this. T3N (a,ﬁhﬂm Q) = z3n0(a, B1) = Asinacos By, (64)
As it is shown above, it is necessary to choose the values v

T, andT; for cos o # 0 in the form of (22) and (23) to fulfill QO

the constraints (20). T4N (04,51,62, v) = zano(a, f1) = Asinasin 3y,
Let

s(a) 0 O which convinces us that the dependence of the moment of
lim Ay 3, (a,ﬂl, > =L <51,62, > . (58) the nonconservative forces on the angular velocity is absent
a—m/2 COS v v in considered system (and there exist the dependences on the
Let note that|L| < +oc iff, when anglesa, 31, 32 only).
P 0 Herewith, the functions\, g,,1I, 3,, appearing in the sys-
N (Amgz (a,Bl, v) s(a)> ’ < +o0. (59) tem (51)—(56), have the following forms:

lim
a—1/2 Q Q
The necessary values of the tracing force for= 7/2  Avp, <Ot7ﬂ1, v> = Asina, II, g, (a’ﬂl’v) =0. (65)
should be found from the equalities

Thenthe dynamic part of the motion equations (the system

T =Tiup2 <37 B, Q) = (51)—(56)) will have the form as the following analytical
2 . . .
) ) system by means of the nonintegrable constraints (20) outside
= —mo (w5 +w3) siny — mo(waws + waws) cos Y+ of and only outside of the manifold (43)
+mwsv cos 1 cos? By — mwsv sin By cos? fo+ &= —ws + ocABv sina, (66)
. . . L+ 13
+mw4v cos (1 sin By cos B — mwov sin B sin Py cos Pa+
mo . ABv? | ) s s
42 sinf - L, (60) W1 = A sin(fa + 7y) sin a cos a + wywe o (67)
I + 13
ABv? cos o
T . .
Ty =Tsyp2 (57 B, Q) = w3 = L cos(f2 + v) sinacos « — wf g (68)
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We = —wWiW4—, (69) the independent subsystem) and one more first integral which
st a "joining” the equation (85).
Wy = wyws CF)SO[, (70) Immediately we shall notice that the latter discourses are
s typical for the choice of the system of discourseqsee
Gy = w, 22 (71) above). Really, while we "do not notice” the existence of
s two analytical first integrals (31), (32). Therefore, when we
If we introduce the dimensionless variables, parameters aji two independent first integrals of the independent third
differentiability as follows: order system (80)—(82), and also the first integral “joining”
AB the equation (85), we shall have the complete tuple of the
wg = novwy, k=1,2,3,4, ng = L+l independent first integrals of the fourth order system (80)—(82),
, (85). The obtained assigned complete tuple (three integrals)
b=ong, <->=mnov<">, (72)  and together with the analytical first integrals (31), (32) forms
we shall reduce the system (66)—(71) to the form the complete tuple of five first integrals of the sixth order
system (80)—(85).
o = —ws3 +bsina, (73) Hereafter, in particular, it will is seen that the composition
/ . . . cos & of the analytical first integrals (31), (32) gives the first integral
wy = = sin(f + ) sinacos o+ wiws 2, (74) " o the (potentially separated) system (83), (84).
wh = cos(fy + ) sin acos a — w? C?Sa, (75)
smo B. Complete list of invariant relations
wy = —wiwy Z?jz, (76) At the beginning we compare the third order system (80)—
cos (82) to the nonautonomous second order system
wy = wwz—, (77) ] . ) .
sin «v dws  cos(fz + ) sinacosa — wi cos o/ sin
8 = w, (?f)sa, (78) doe —w3 + bsin ’ (86)
sin « dw; _ Wiwg Cos a/ sin «v
As is seen, the independent fifth order system (73)-(77) on da ~ —ws + bsina

its own five-dimensional manifold was formed in the sixth Let rewrite the system (86) on algebraic form using the
order system (73)—(78) which can be considered on its OW(bstitutionr — sin o

six-dimensional manifold
dws  cos(B2 +7)T —wi/T

TS* x R (79) dr T —wstbr @)
— the direct product of the tangent stratificatié®> of two- dwy _ wiws/T )
dimensional spher&? on two-dimensional plane. dr  —ws+br
Furthermore, the independent third order subsystem Later on, if we introduce the uniform variables by the
o = —ws + bsina, (80) formulas
w] = UT, W3 = UsT, (88)
/ . 5COS (¢
ws = cos(fP2 + ¥) sinacos @« — wy ——, (81) _
sin v we shall reduce the system (87) to the following form:
, cos
= 82 2
wh = wiwy———, (82) T% oy — cos(a +7)b U
was formed from the sixth order system (73)—(78), and also duT " ;uz + (89)
(while dependent) second order system Tt pyy = —2 ,
cosa dr —ug +b
wy = —sin(f +7)sinacosa +wiwe ——. (83) thatis equivalent to
o) iy cos(Ba +2) o 41— b
e dr —uz b 7 (90)
andthe equation cos o duy  2ujup — buy
B =w_ (85) Tar T —wptb
Sin &«

canbe chosen. Let compare the second order system (90) to the nonau-

In general, for the complete integrability of the system (73)lonomous first order equation
(78) it is sufficient to know five independent first integrals. dus  cos(Ba +7) — u2 + ud — buy
However, after the partition of the system on three parts (the duy = Yy iy — bty ) (91)
system (80)—(82), the system (83), (84) and the equation (85)?1, , , ) .
for the complete integrability it is sufficient to know two ich is reduced uncomplicated to the complete differential:

independent first integrals of the system (80)—(82), one — of J (ug + u? — bugy + cos(Bz + 7)) 0

the system (83), (84) (after the reduction of the latter system to P (92)
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And so, the equation (91) has the following first integral: - / (b — uz)duy . (103)
2, .9 2¢1 — C1{C1 £ /C} —4q1}/2
uj +uj — bug +cos(Bz +y) B 93
" = C, = const, (93)  Theleft-hand side (accurate to the additive constant), obvi-
which in former variables is looked like ously, is equal to .
In | sin a]. (104)

w? + w? — bws sin a + cos(fy + ) sin’ a

= (' = const If
(94) b

_ 2 _ 12 2
Remark 8.1. Let consider the system (80)~(82) with zero 42— 5 =P1, b1 = 0"+ Cf —4dcos(B2 +7),  (105)

mean variable dissipation which becomes the conservative fﬁén the right-hand side of the equality (103) has the form

w1 Sin o

b=0:
o = —w 1 / d(b? — 4p7)
= —ws, _z _
, . 5COS 4J (b3 — 4p?) £ Cr\/bF — 4p7
wh = cos(f2 + ¥) sina cos a — wi ——, (95)
sin «v b/ dp:
;L Cos — =
Wy = Wi (b3 — 4p3) £ C1 /b3 — 4p3?
It has two the analytical first integrals of the forms 1 ml /b2 — 4p? 1l b[ (106)
=-;n|—— 511,
w3 + w? + cos(fy + ) sin? a = C = const (96) 2 & 2

wy sina = C5 = const (97) where

It is obviously that the ratio of two the first integrals (96), (97) I, = / > d2p3 , p3 =1/b3 —4p?.  (107)
is also the first integral of the system (95). But fog 0 each Vb1 = p3(ps = C1)

of functions Threecases are possible for the calculation of the integral
w3 + wi — bws sin a + cos(Bz + ) sin® a (98) (1?73)' 9
and (97) are not the first integrals of the system (80)—(82) 5 5
separately. However, the ratio of the functions (98), (97) isf; = — 1 In | VB — 4+ Vb - + G +
the first integral of the system (80)—(82) for ahy 2v0* —4 ps £ b? —4
Later on, let find the evident form of the additional first 1 VP - S o
integral of the third order system (80)—(82). At the beginning+ B A & == ! _| 4+ const.
for this we shall transform the invariant relation (93) for # 2vb* —4 p3 £ b —4
0 as follows: b (108)
<
b\ > C1\> b+ 2
-] + - = - +7). (99 2
(“2 2> <u1 2 > o cos(Bt)- (99 I = \/417b2arcsin ZE((J”) - +Cb3 +const  (109)
As is seen, the parameters of given invariant relation shouldIII b2 B 1P !

satisfy the condition
/b2 _ p2

b2+ C? —4cos(Ba +7) >0, (100) I =F—Y1 "3 4 const 110

1 (B2 ) 1 :!:01(p3:|201) ( )

and the phase space of the system (80)—(82) is stratified ONvhenwe return to the variable

the family of the surfaces which is assigned by the equality

(99). =l (111)
Thus, by virtue of the relation (93) the first equation of the sina. 2
system (90) has the form we shall have the final form for the valug:
. b> 2.
dug  2(cos(fz 4 ) — bug +u3) — C1U1(C1, u2)
L Uy + b ’ _ 1 Vb2 — 44 2p; 4
(101) h=-75 In 2 2 + 7 +
where V02 —4 | \/bF —4p? £ 4 b2 —4
1 1 Vb2 —4 T 2py ol
Ui(C1,us) = ={C1 £+ 1/C? — 4(u2 — buy + cos(B2 + , + In T +const. (112
1( 1 2) 2{ 1 \/ 1 ( 2 2 ( 2 2)0}2) o0Wb? — 4 \/bf _410%101 \/m ( )
herewith, the constant of the integratiéh is chosen fromthe Il. b < 2.
condition (100). 1 4O 02— 42 b2
Therefore, the quadrature for the search of the additionall; = i arcsin ! 5 1 2171 o +const (113)
first integral of the system (80)—(82) has the form (= 4-b bi(V/b1 —4pi + C1)
cos(Ba +7y) — bug + u3) . v=2.
dr 2p:
fnd— L =7F + const (114)
T Ci(V/bf — 4pi £ C1)
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So, the additional first integral was found right before for Obviously, that the analytical first integrals (119), (120) in-
the third order system (80)—(82) i.e. it was presented the cowolve the founded analytical first integral (118) (it is sufficient
plete tuple of the first integrals which are the transcendental this to add the squares of the left-hand side of the equalities
functions of its own phase variables. (119), (120)).

Remark 8.2. It is necessary to substitute formally the Later on, finally, for the integration of the fourth order
left-hand side of the first integral (93) instead @f in the system (80)—(82), (85) two independent the first integrals have
expression of the found first integral. already founded. And for the complete its integrability it is

Then the obtained additional first integral has the followingufficient to find one more (additional) the first integral which
structural form (which is similar to the transcendental firsjoining” the equation (85).

integral from the planeparallel dynamics): Since
. . w3  wp duy  u1(2us —b) dfy Uy
— i At 121
In |sina| + Go (sm o ) Cs = const. (115) pm b—uw)r ' dr b= uw)r (121)

Thus, there are already found two the independent firghen
integrals for the integration of the sixth order system (80)— duy — uy — b (122)
(85). And now, under the acceptance of the discourses type dp
systeml (see above, when as we were "do not notice” the opyiously, foru; # 0 the equality
existence of two analytical first integrals (31), (32)), and for

its complete integrability it is sufficient to find one first integral 1 )\ 2
Uy = — b+ b% —4 < > s

for (separated potentially) system (83), (84), and also the =
additional first integral which "connects” the equation (85).
After the change of the variables b2 = b2 + C2 — dcos(fs + 7), (123)

wy = waz sin(y + B2) + w4 cos(y + P2),

(116) s fulfilled, then the integration of the following quadrature:
Wi = wi sin(y + fB2) — wa cos(y + Ba)

du1
the system (83), (84) can be reduced to the form P+ const= + / 5 R (124)
) Vo - (- %)
Wy
= — Wi, will bring to the invariant relation
d
dw (117) 2uy — C
= w,, 2(B1 + C4) = L arcsin , (125)
dfh Vb2 + C? —4cos(By +7)
which expects the existence of the analytical first integral: C, = const
w? +w?, = C3 = const. (118)  In other words, the equation
Let ask the question: how is related the obtained right now sin[2(6, + Cy)] = + 2uy = G4 (126)
first integral (118) with the analytical first integrals of the Vb2 + C? —4cos(B2 +7)

forms (31), (32)?

Really, two discourses types énd Il, see above) corre- )
spond to two following alternatives. For the complete integragin[2(61+04)] - 4+ 2wy — Cysina . (127)
tion of the sixth order system (25)—(30): Vb2 +CF —4cos(Ba + ) sina

1) Either we find five the independent first integrals of the In principle, it makes possible to stop on the latter equality

sixth order system (25)_(30,); to achieve the additional invariant relation "connecting” the
2) Or we transform the sixth order system (25)~(30) UGy ation (85), if we add to this equality that it is necessary to
as there are stand out the independent subsystems else Ryt te formally the left-hand side of the first integral (93)
low order.' . ) . instead ofC} in the latter expression.
So, for instance, since after observation of such coordinatess ;¢ e shall make the certain transformations which reduce

asw., w. the stratification of the system vector field is 0CCuf, e gptaining of the following evident form of the additional
such as the independent second order subsystem is formgg integral (herewith, the equality (93) is used):
(117), it needs to find four the independent first integrals 2

instead of five ones (three — for the integration of the fourthy o5 | ¢y — (uf — uj + bug — cos(f2 +7))? (128)

order system (80)—(82), (85) and one — for the integration of u? (4u3 — 4buy + b?) '

the separated second order system (117)). ~ Returningto the old coordinates, we shall obtain the addi-
And now, finally, let rewrite the forms of the analytical firSt;qnal invariant relation as the form

integrals (31), (32) in new variables as follows:

is fulfilled, or, under the transition to the old variables

tg’[2(B1 + Cu)] =
Wi €OS 31 — w, sin By = W' = const, (119) , g 2o 4]

(w? — w? + bws sina — cos(Bz + ) sin? a)? (129

Wi Sin B1 + w, cos By = Wy = const. (120)
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or finally VI. CASE OF THE DEPENDENCE OF THE MOMENT OF THE

) ) _ L NONCONSERVATIVE FORCES ON THE ANGULAR VELOCITY
1 wi — w3 + bws sina — cos(fz + ¥) sin” « ) )
—B1 & sarctg - = A Introduction on the dependence on the angular velocity
2 wy (2ws — bsin «)

(130) This section is devoted to dynamics of four-dimensional
= (C, = const. rigid body on the four-dimensional space. But since this
section is devoted to the study of the case of the motion
And so, the system of dynamic equations (4)—(7), (10}nder the presence of the dependence of the moment of forces
(15) under the condition (64) has eight invariant relatiorsn the angular velocity tensor, we introduce such dependence
in considered case: there exist the analytical nonintegralilem more general positions. Additionally, the given point of
constraints (20), the cyclic first integrals (18), (19), the firstiew helps us to introduce this dependence and for many-
integral (94) and also there exists the first integral expresseddignensional ones.
the relations (108)—(115) which is the transcendental functionLet = = (x1y,z2n, 23N, Z4n) are the coordinates of
of its phase variables (in sense of complex analysis also) ahe point N of the action of the nonconservative force
expresses in terms of finite combination of the elementafgf a medium interaction) to two-dimensional disk) =
functions, and finally the transcendent first integral (1301, @2, Qs,Q4) are the components not depending on the
((129)) and analytical first integral (118). angular velocity tensor. We shall introduce the dependence of
Theorem 8.1. The system (4)—(7), (10)—(15) under théhe functions(zin,z2n, zsn,z4n) ON the angular velocity
conditions (20), (64), (19) possesses eight invariant relatiotgnsor by the linear form only since given introduction itself
(the complete tuple), three of which are the transcendenialnot obvious a priori.
functions from the complex analysis view of point. Herewith, And so, let accept the following dependence:
all the relations express in terms of the finite combination of
the elementary functions. z=Q+R, (134)

whereR = (R1, Rs, R3, R4) is the vector-function containing
the components of angular velocity tensor. Herewith, the
dependence of the functioR on the angular velocity tensor
Let consider the following third order system of the equds gyroscopic:

C. Topological analogies

tions: Ry
. . i R
f—i—b*fcosg—i—]ﬁsimfcosf—77'12smg =0, R = : =
cosé R
1 + cos? & (131) R
Th + b cos§ + & —————> =0, by >0, *
cos&siné
- ) . I . 0o - — h
describing the fixed spherical pendulum which is placed in a woo @ w3 !
flow of the filing medium under the absence of the depen- _ 1| w0 —wi w e (135)
dence of the moment of the forces on the angular velocity, v | —ws wy 0 —-w hs |-
i.e. the mechanical system in the nonconservative field of the w3 —wy  wy 0 hy

forces. In general, the order of such system should be equal
to 4, but the phase variablg is the cyclic, that reduces toHere (hy, ho, h3, hy) are the certain positive parameters.

the stratification of the phase space and the deflation. And now, with the reference to our problem, sincgy =
Its phase space is the tangent stratification zany =0, then
: h h
TS*{&,1j1,&,m} (132) a3y = Q3*71(w4*w5), TyN = Q4771(w37w2). (136)

to two-dimensional spher82{¢, n;}, herewith, the equation
of the big circles B. Reduced system

7 =0 (133) Similarly to the choice of the Chaplygin analytical functions
assigns the family of the integral manifolds. Q3 = Asinacos 31, Q4 = Asinasinfy, A >0, (137)

Itis not difficult to make sure that the system (131) is equi\za shq) accept the dynamic functionszsy andz,y as the
alent to the dynamic system with the zero mean variable di‘%]lowing form:

sipation on the tangent stratification (132) to two-dimensional
sphere. Moreover, the following theorem is equitable. s(a) =Bcosa, B>0, h=h; >0, v£0, h="hy >0,
Theorem 8.2. The system (4)—(7), (10)—(15) under the 0 L
conditions (20), (138), (19) is equivalent to the dynamic systens (a, B, B, U) = Asinacos 31 — E(M —ws), (138)
(131).
Really, it is sufficient to acceptr = &, 61 = m, b = Q ) ) h
—by, Rs = cos(y+ [Ba2). T4N (a,ﬂl,ﬂg, U) = Asinasin 5; — 5(w?, — ws),
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which convinces us that the additional dependence of the 14 = ngv? sin o cos o cos By cos(y + Bo)—
damping moment of the nonconservative forces (and the Boh
dispersing one in some domains of the phase space) is also A cos acos(y + fBa), (150)
present in considered system (i.e. the dependence of the 1S
moment on the angular velocity tensor is present). Moreovéhere
hi = ha, hs = hy by virtue of the dynamical symmetry (17) . s AB ,  Bh
of the body. ry =cosy—siny # 0, nj = T H = L (151)
. Later on, let accept the system. of discourkaghich takes We note that the particular case
into account and the system of discourtegsee above).
We shall arouse to introduce the following variables in this cosy = siny (r; = 0), (152)
section: U = wy — w3, which simplifies the dynamic equations can also be considered
U = wr — w separately (similarly the case (143)).
? * o (139) Let introduce the following phase variables by the formulas:
U3 = wo €OS o — wsg sin Ba, .
Ug = wyq €S P2 — ws sin Fa. e sn;ﬁ:_—&- U2.CO; o,
Really, the assigned coordinates are defined correctly for 2= COS_ Ltz s, (153)
v3 = —ugsin B + uy4 cos Gy,
cos ﬂ2 # Sl ﬁ27 (140) V4 = U3 COS ,81 =+ Uy sin ,6)1.
and Jacobian of the mapping is equal to then outside of and only outside of the manifold
1
- 141 Oy = f R: By =7k, keZ
(COSﬁQ —Sinﬁ2)27 ( ) 4 {(a7ﬁ1,u1,u2,U37u4) S 61 TR, S (E54)
herawith, the inverse transformation is assigned as follows: the system (145)—(150) has the form
wy = M8 tasinfa & = —vy — bH v, + bsina, (155)
cos B9 — sin By . oS
. U —u1cos Bo B1 = [va + bH;v2] o (156)
o cosg—siny’ (142) oo ‘
oy — Ug — Uz sin Bo U1 = Ngv Ty Sin o cos a—
cos 32 —sin 3o’ —Hjvrivy cosa — vy - [vg + bHyvs) 095 a7 (157)
1
g = 4= U208l s
cos 32 —sin 3o’ U9 = —Hjvrivg cos a + vq - [vg + bHyv3] c.osoz7 (158)
andthe particular case L, s
U3 = ngu~“ sin a cos acos(y + —
cos B; = sin s, (143) 8o (v +62) en
!/
which simplifies the dynamic equations can be considered 10Vt cos @ cos(y + B2) = va - [vs + bH1vo] 2o, (159)
separately. 0y = — H! vvs cos v cos(~ - Bo) L
Then the equations (33)—(38) under the condition (138) v 100z cos acos(y + )
outside of and only outside of the manifold +vg - [vg + bHyv3) C95a7 (160)
S1n &«

m
O3 = {(a,ﬁl,wz,W3,W47W5) €ER’: a=<+7k, ke Z} wherewe introduce as before the dimensionless parameters as
(144) follows:

transform to the following equations: ng — A737 b=ong, [b] =1,
. . L+ 13
Q. — U3 Sin ﬂl + U4 COS ﬂl— o H{ B Bh [H ] _, (161)
—Ungv sina + o Hj[—uysin 81 + ug cos 31] =0,  (145) 1= nog (I, + I3)ng’ ==
1 sin a — cos aufug cos By + g sin By]— Let also introduce one more auxiliary change of the part of

the phase variables, as follows:
—o Hj cos afuy cos B + ug sin $1] = 0, (146) P

Buh $1 = v3 +bHiv1, $o = v4 + bHqvs. (162)

———riuy cosa, (147) . ) )
L +13 Then the investigated system (155)—(160) after the introduc-

tion of dimensionless variables and differentiability

= —n%vzrl sin avcos asin By —

Uy = n%vzrl sin « cos a cos 1 — riug cosa, (148)
L+ 13 v nouvg, k=1,...,4, <->=mngv<'>,  (163)
i3 = —ngv” sin acos asin By cos(y + fa)— will rewrite as the form
Buvh
—_ 149 I _ ;
I+ 1 uy cos avcos(y + B2), (149) o = —s1 +bsina, (164)
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COS @

By =s2——0), (165) or
coss;n “ Ryvs cos 1 — Ryvy sin B+
’ . 2 _
s1 = Rysinacosa — s; i RiHyvicosa,  (166) Rl sin B — sy cos 1] = WP — const w77
sh = SlSQC?SOé — Ri1Hjvycosa, (167) Rivgsin B1 + Ryvy cos B1—
sin «
; 0
- =Wy = 17
v] = Rosinacos o — Sav2 Cf)s e _ HiRovicosa, (168) Rs[s1 cos By + sgsin 51] = W5 = const (178)
CoS e where
! = —
U = 201 Hi Ryvy cos a, (169) Ry = cos(y + B2) + bH;(cosy — sinvy),

where Ry = cosy — sinvy (179)

Rl = le (COS’)/ - Sin/}/) + COS(’Y + 62)7 as before.

Ry =1, = cosy — sinn. (170) Later on, let express from the relations (177), (178) the

valuesvy, vo. We have:
Obviously, that forH; = 0 formally the independent fourth

order subsystem (164)—(167) stands out in the system (164)— vaRy = Raso + 1 (B, W, W), (180)
(169) on the tangent stratificatioS? to two-dimensional Ry = Rosy + WO o 181
sphereS2{0 < a < m, 0 < 3, < 2x}, in which, in turn, it oLl = Rasi+ 02(B1, W, W), (181)
can be stand out the independent third order subsystem (164)ere
(1686)t, (_167)_on_ iTs 0\th thre:a-dir;en?ioréal phasidrpanif(z)ld. Y1 (B, WO, W) = WP cos By + WY sin 31,

ut, in principle, it is just understood, since féf; = 0 110\ _ 1170 0
we are under the conditions of absence of moment of the V2(f, W, Wp) = Wy cos By — Wysin fi.
forces on the angular velocity tensor (see previous section and hen the system (164)—(167) has the form of the indepen-
the system (80)—(82), (85)). The latter fact allows to integragtent fourth order system:
completely similarly the considered fourth order system (164)—

(182)

p .

(167), but signifies, and the considered sixth order system o = —s1 +bsina, (183)

(164)—(169), since there exist two independent analytical first s) = Rysinacosa — 2 cosa

integrals (31), (32) or (119), (120) (see above on two systems S

of discoursed andll). —RoHys1 cosa — Hitpo(By, WP, WD) cosa, (184)
And in the given case it is great for us thaf, # 0. , COS (v

Therefore, we transform the having analytical first integrals S = S182 T

(31), (32) or (119), (120). We have the evident type of its in
the different variables:
. , Cos &
u3 — up sin g i~ _ U8 T U1CO8 B2 cos Ay — py = sa——. (186)
cos 3 — 2 —sinfs i cos B — 2 —sin By 7 s

—RyH, s cos o — Hyaby (81, W, W3 cos a, (185)

The system (183)—(186) can be considered as the system

= W] = const (171)  (164)—(167) which is reduced to the leveld’?, W?) of the
Ug — ug sin fBo iy U4~ u2c0s Bo cos — analyti_cal first integrals (177), (178).
cos f —2 —sin By 7T Cos 8 —2 —sin (s = Obviously, that
= W} = const (172) ¥1(51,0,0) = 92(51,0,0) = 0. (187)

If we consider the case (20) (i.e., in particular, when thEherefore, we shall consider the system (183)—(186) on the
value 3, is the identical constant along the phase trajectorieggro levels of the analytical first integrals (177), (178):
then the follow_lng analytical functlons are constant on the W0 — W9 — o, (188)
phase trajectories of the considered system:

uz(siny — cosy) 4 uy cos(y + B2) = Wy = const  (173) which has the form

ug(siny — cosy) + up cos(y + B2) = W3 = const  (174) of = _Sclo—;oi) sina, (189)

In another variables the latter two invariant relations have sy = Risinacosa —s3 sina RyHisycosa,  (190)

fhe forms s = 5152 Sk Ry Hy sy cosa, (191)
(vg cos 81 — vy 8in B1) cos(y + B2)+ sin o s

+(v4 cos By —v3 sin By ) (sin y —cos y) = W{ = const, (175) = sina’ (192)

The given system can be considered on the tangent stratifica-
tion 7'S? to two-dimensional sphe®?{0 < a < 7, 0 < 3; <
+(vy sin By +v3 cos By )(siny—cosy) = W3 = const, (176) 27}, in which, in turn, it can be stand out the independent third

(vg sin 81 + v1 cos B1) cos(y + B2)+
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order subsystem (189)—(191) on its own three-dimensional Remark 8.3.Let consider the system (189)—(191) with zero

phase manifold. mean variable dissipation which becomes the conservative for
And so, for the integration of the sixth order system at the= R, H;:

beginning we used the system of discoursefsee above), /

when we did not yet take into account the existence of two o = —si +bsina, COS

independent analytical first integrals of the forms (31), (32). i = Risinacosa — s5— —bsy cosa, (202)
In consequence we have limited (reduced) the considered , cos o sina

sixth order system on the levels (in consequence zero) of the 52 = 5152 — — bsacosa.

assigned first integrals, i.e. the system of discoutbewas |, has two the analytical first integrals of the forms
used (see above).
57 4+ 52 — 2bsy sina + Ry sin?a = Cf = const,  (203)
C. Complete list of invariant relations
At the beginning we compare the third order system (189%
(191) to the nonautonomous second order system t is obviously that the ratio of two the first integrals (203),
(204) is also the first integral of the system (202). But for

b # RsH, each of functions

sgsina = C5 = const (204)

dsq R1 sin acos o — sg cosa/sina — RoHysy cos

do —81 + bsina ) ) ' L
dsy  sisycosa/sina — RyHysy cos o 51+ 53 — (b+ ReHi)sisina + Ry sin” (205)

do —s1+bsina . and (204) are not the first integrals of the system (189)—(191)
(193) eparately. However, the ratio of the functions (205), (204) is
Sut(;:itruet\i/grrl]tf:thsemszstem (193) on algebraic form using tht e first integral of the system (189)—(191) for anyR2H; .

Later on, let find the evident form of the additional first

dsi _ Ram —s3/7 — RoHis integral of the third order system (189)—(191). At the begin-
dr —51 + 07 ’ (194) ning for this we shall transform the invariant relation (200)
dsy _ s153/T — RoHysy for u; # 0 as follows:
dr —81+ b1 ' 9 9
Later on, if we introduce the uniform variables by the <t1 - M) + <t2 — Cl) =
formulas 2 2
S1 = tlT, So = th, (195) . (b + R2H1)2 =+ 012 — 4R1 (206)

4
As is seen, the parameters of given invariant relation should

we shall reduce the system (194) to the following form:

42
% 4t = R tQt +R;H1t1, satisfy the condition
—l1
TdtQ i t1to — RoHito (196) (b+ RoH,)* + C7 — 4R, > 0, (207)
- 2= 5 >
. _ dr —titb and the phase space of the system (189)—(191) is stratified on
thatis equivalent to the family of the surfaces which is assigned by the equality
dty 13 —t2— (b+ RoHy)t; + Ry (206).
i L+ b ’ Thus, by virtue of the relation (200) the first equation of
dty  2t1ts — (b+ RoH )ty (197)  the system (197) has the form
TE_ —t1+b ' 7’% . 2t%—2(b+R2H1)t1+2R1—ClUl(Cl,ﬁl)
Let compare the second order system (197) to the nonau- dr b—t ’
tonomous first order equation (208)
dti 13 —t3—(b+ RoH1)t1 + R where 1
1 1~ tg — 24171 )t1 1 — _
e 198 Ui(Ch,t1) = ={C1 £ Us(C1,t1)}, (209)
dto 2t1t2—(b+R2H1)t2 ’ ( ) 1( ! 1) { ' 2( ' 1)}
which is reduced uncomplicated to the complete differential:  ¢/,(c, ¢,) = \/02 (b+ RoHi )ty + 12),
2 2
d (tl +t5— (0+ ReHyty + R1> = 0. (199) heravith, the constant of the integratiafh is chosen from the
t2 condition (207).

And so, the equation (198) has the following first integral: Therefore, the quadrature for the search of the additional

2042 (bt RoH: D - R first integral of the system (189)—(191) has the form
1+t = (bF ReHh)t + L — ¢y =const,  (200) p
to T
which in former variables is looked like T
s24+s3—(b+ Rng.)sl sina + Ry sin? o _C —const = / (b —t1)dty
sgsina 2(

o) — (b+ RoHy)ty +13) — C1{Cy £ Ux(C, tl%%{ )
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The left-hand side (accurate to the additive constant), obvi- 1. (b+ RyH;)? — 4R, < 0.

ously, is equal to 1
i L = X
In | sin a]. (211) 1 JAR: — (b1 RoH,)?
If /12 2 2
b+ RoH, 5 5 5 X arcsin £ le 47:1 i + const. (220)
31 -y = b7 = (b+R2H1)"+C7 —4R;, (212) b1 (/b2 — 4w? + C))
then the right-hand side of the equality (210) has the form . (b+ RoH1)* — 4Ry = 0.
1 / d(b] — 4w?) B L=7F _ 2w _ +const.  (221)
4] (62— 4w?) £ 00— dw? Ci(y/bf — dwi £ C1)
dw, So, the additional first integral was found right before for
—(b+ Rng)/ = the third order system (189)—(191), i.e. it was presented the
(b — dw?) £ C1/bF — 4wt complete tuple of the first integrals which are the transcen-
1 /02 — 4w ba RoH dental functions of its own phase variables.
=3I % a2t 22 L1, (213)  Remark 8.4.1t is necessary to substitute formally the left-
! hand side of the first integral (200) instead ©f in the
where expression of the found first integral.

Then the obtained additional first integral has the following

dw3
I =/ —— , w3 =4/bf —4wi. (214) structural form (which is similar to the transcendental first
Vb3 — w3 (ws £ Cy) : L
integral from the planeparallel dynamics):
Threecases are possible for the calculation of the integral

. . S1 52
(214). . In|sina| + G» (sm = sina) = Cy = const. (222)
. (b+ Rz H1)* — 4R: > 0. Thus, there are already found two the independent first
I = — 1 « integrals for the integration of the fourth order system (189)—
2W (192). And for the complete its integrability, as specified
above, it is sufficient to find the additional first integral which
% In Wit vy —ws Vb — w3 + G + "connects” the equation (192). ’
w3+, Wi Since
+ ! 1 Wi — Vb~ wf & + (215) % - b(lij; Rng)b’ % - b—tQt » (223)
2W1 " ws + Cl T W1 T ( 1)T T ( 1)T
then
+const Ly (b+ RoHy). (224)

d
Wy =/(b+ RyHy)? — 4Ry, . n . -
Itis obvious that fot; #~ 0 the following equality is fulfilled
1. (b+ R2H1)2 —4R; < 0.

_ 1 2 2
1 +Cyws + b% t1 = 3 ((b+ RoHp) £4/b35 — (2t — C4) > , (225)

Il = iR 2 T > arcsin m + const
_ w
VAR = (b+ RoH) 1(ws £ Ch (216) b3 = (b+ RaH1)? + CF — 4Ry,
. (b+ RoHy)? — 4Ry = 0. then the integration of the following quadrature:
\ bz — ’LU2 dtg
I = F-1—3_ 4 const (217) B1 + const= =+ / (226)
T Ol(ws = 0) /b2 — (2ty — C1)?
Whenwe return to the variable will bring to the invariant relation
S1 b -+ R2H1
1= sine 2 ’ (218) 2(61+ C3) =
' . 2t - C
we shall have tr;e final form for the valug: — + arcsin L _ 1 - , O3 = const
l. (b+ RoHy)* — 4Ry > 0. V(b+ ReHp )2+ C? — AR, @2
7
URS In other words, the equality
1 Wi =+ 2w, Ch : 2ty — Cy
=— In +—|+ sin[2(01 + C3)] = £ (228)
2 ’\/bf—élw%j:(]’l Wi V(b+ Ry H1)? + CF — 4R,
is fulfilled and under the transition to the old variables
T L e BT ) 9285 — Oy sin
2W, Vb2 —dwi+Cy W sin[2(f1 + Cs)] = £ 2 !

V(b+ RyH,)2 + C2 — 4R, sina
-+const (229)
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In principle, it makes possible to stop on the latter equalify. Topological analogies
to achieve the additional invariant relation "connecting” the
equation (192), if we add to this equality that it is necessa
to substitute formally the left-hand side of the first integref
(200) instead of”; in the latter expression. . o ) osiné

But we shall make the certain transformations which reduce & + (b« = Hi)§ cos + Rz sin £ cos & — 7y COS€+
to the obtaining of the following evident form of the additional s 11170 s 0 e ] —
first integral (herewith, the equality (200) is used): +HT Wi = Wy cosm] =0,

Let consider the following third order system of the equa-
jons:

B Ny .. 14 cos?¢
(25 + Ca)] = it (b = Hih cosE+ L ing
2 42 1 (bt RoH: )t — Ry)2 + H{* WP cosny + Wosinm] =0, b, >0, Hi* >0,
_ B+ 0+ Byt — Ry)” (230) L ? ' T (233)

132 — (b + RoHy))? describing the fixed spherical pendulum which is placed in a
Returningto the old coordinates, we shall obtain the addfiow of the filing medium under the presence of the depen-
tional invariant relation as the form dence of the moment of the forces on the angular velocity,
t2[2 ) — i.e. the mechanical system in the nonconservative field of the

9°2(5 + C3)] = forces. Unlike previous activities [1], [5], [6], the order of such

(s2 — 52 + (b+ RyH1)sy sina — Ry sin? )2 system is equal to 4 (but not 3) since the phase variapls
= $2(2s1 — (b+ RoH;) sina)? » (231) not the cyclic, that does not reduce to the stratification of the
. phase space and the deflation.
or finally ! Its phase space is the tangent stratification
—,61 + 5 X .
Tsz{fv 7717 Ea 771} (234)
Xarctgs%—s%—l—(b—&—Rng)sl sina — Ry sin® « _ (@232)
s2(2s1 — (b+ RoHy)sina) to two-dimensional spher82{¢,n;}, herewith, the equation
— ¢, = const. of the big circles

) . 7 =0 (235)
And so, the system of dynamic equations (4)—(7), (10)—
(15) under the condition (138) has nine invariant relations Ebsigns the family of the integral manifolds #6f° = W9 = 0
considered case: there exist the analytical nonintegrable cegyy,
straints (20), the cyclic first integrals (18), (19), the analytical ; is not difficult to make sure that the system (233)
first integrals (31), (32), the first integral (201) and also thegg equivalent to the dynamic system with the (zero mean)

exists the first integral expressed by the relations (215)~(22g)japle dissipation on the tangent stratification (234) to two-

which is the transcendental function of its phase variables (if},ansional sphere. Moreover, the following theorem is equi-
sense of complex analysis also) and expresses in term '

finite combination of the elementary functions, and finally the

transcendent first integral (232). o ; : .
20), (1 1 I h
Theorem 8.3. The system (4)—(7), (10)—(15) under th c;;é:i)ltlons( 0), (138), (19) is equivalent to the dynamic system

conditions (20), (138), (19), (188) possesses nine invariaht L -
relations (the complete tuple), three of which are the tran-bReil}y'_'t Il{s**sugcgnt_to ?Iice%@ :b% gl - Rm’ b=
scendental functions from the complex analysis view of point.*> **1 = *1 » 71201 = 71, A T B2 T A
Herewith, all the relations express in terms of the finite
combination of the elementary functions.

We also note that in the similar theorem 8.1 of this section

the question is on the complete tuple of the first integrals | the previous studies of the author, the problems on the
which consisting on eight the first integrals, although thefgotion of the four-dimensional solid were already considered
are exist all nine the first integrals. But at proof of theorery 5 nonconservative force field in the presence of the follow-
8.1 the system of discoursess used (se above) which impliesing force. This study opens a new cycle of works on integra-
the introduction of such phase coordinates (in particulglon of a multidimensional solid in the nonconservative field
wg, k=1,...,4),in which the system vector field allows thepecause previously, as was already specified, we considered

additional stratifications. Herewith, the analytical first integra@my such motions of a solid when the field of external forces
(31), (32) do not use directly, that is admit to dispense by thgys the potential.

less quantity of the first integrals.
And at proof of the theorem 8.3 the system of discourses
Il is used (see above) which implies the reduction of inves- ACKNOWLEDGMENT
tigated system on (zero) levels of the analytical first integrals
(31), (32). The latter fact takes into account in principal the This work was supported by the Russian Foundation for
complete tuple of the having first integrals. Basic Research, project no. 12-01-00020-a.

Theorem 8.4. The system (4)—(7), (10)—-(15) under the

VIl. CONCLUSION
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