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Variety of the cases of integrability in dynamics of a 2D-, 3D-, and
4D-rigid body interacting with a medium

Maxim V. Shamolin

A vast number of papers are devoted to studying the complete integrability
of equations of fourdimensional rigid-body motion. Although in studying low-
dimensional equations of motion of quite concrete (two- and three-dimensional)
rigid bodies in a nonconservative force field, the author arrived at the idea of
generalizing the equations to the case of a four-dimensional rigid body in an
analogous nonconservative force field. As a result of such a generalization, he
obtained the variety of cases of integrability in the problem of body motion in
a resisting medium that fills the four-dimensional space in the presence of a
certain tracing force that allows one to reduce the order of the general system
of dynamical equations of motion in a methodical way.

1. Introduction

A huge number of works is devoted to studying the complete integrability cases of the

equations of motion of a four-dimensional rigid body. In studying the ”low-dimensional”

equations of motion of quite concrete (two- and three-dimensional) rigid bodies in a non-

conservative force field, he arrived at the idea to generalize the equations to the case of

motion of a four-dimensional rigid body in an analogously constructed field. As a result

of such a generalization, he obtained several cases of integrability in the problem of body

motion in a resisting medium that fills a four-dimensional space under the presence of a

certain tracing force, which allows one to methodologically reduce the order of the general

system of dynamical equations of motion.

Moreover, to the author opinion, the obtained results are original from the viewpoint

that a pair of non-conservative force exists in the system.

Previously, in [1–3], the author showed the complete integrability of the equation of

plane-parallel body motion in a resisting medium under the streamline flow around condi-

tions, when the system of dynamical equations has a first integral that is a transcendental



function (in the sense of theory of functions of one complex variable, having essentially

singular points) of quasi-velocities.In this case, it was assumed that the whole interaction

of the medium and the body is concentrated on a part of the body surface that has the

form of a (one-dimensional) plate. Later the plane problem was generalized to the spatial

(three-dimensional) case where the system of of dynamical equations has a complete tuple of

transcendental first integrals. It was assumed here that the whole interaction of the medium

and the body is concentrated on a part of the body surface that has the form of a plane

(two-dimensional) disk.

2. Motion on Two-Dimensional Plane

2.1. A more general problem of motion with tracing force

Let us consider the plane-parallel motion of a body with forward plane endwall in the re-

sistance force field under the quasi-stationary conditions [1–3]. If (v, α) are the polar coor-

dinates of a certain characteristic point of the rigid body, Ω is its angular velocity”— and

I and m are the inertia-mass characteristics, then the dynamical part of the equations of

motion (including the case of Chaplygin analytical functions of medium action; see below)

takes the form

v̇ cos α− α̇v sin α− Ωv sin α + σΩ2 = Fx,

v̇ sin α + α̇v cos α + Ωv cos α− σΩ̇ = 0,

IΩ̇ = yN (α, Ω, v)s(α),

(1)

where Fx = −s(α)v2/m, σ > 0. If we consider a more general problem on the body motion

under the existence of a certain tracing force T passing through the center of masses and

ensuring the fulfilment of the relation

VC ≡ const (2)

during all the time of motion(VC is the velocity of the center of masses; then in system (1),

instead of Fx, we have a quantity identically equal to zero, since a non-conservative par of

forces acts on the body.

In the case of Chaplygin analytical functions, we take the dynamical functions s and yN

in the form s(α) = B cos α, yN (α, Ω, v) = A sin α− h1Ω/v, h1 > 0, A, B > 0, v 6= 0, which

shows that in the system considered, there also exists an additional damping (and breaking

in some domains of the phase space) non-conservative force moment.

Owing to constraint (2), under certain condition, system (1) reduces to the following



system on the three-dimensional cylinder W1 = R1
+{v} × S1{α mod 2π} ×R1{ω} :

v′ = vΨ(α, ω), (3)

α̇ = −ω + σn2
0 sin α cos2 α + σω2 sin α− σh1B

I
cos2 α,

ω̇ = n2
0 sin α cos α− σn2

0ω sin2 α cos α + σω3 cos α +
σh1B

I
ω2 sin α cos α− h1B

I
ω cos α,

(4)

Ψ(α, ω) = −σω2 cos α + σn2
0 sin2 α cos α− σh1B

I
ω sin α cos α,

where Ω = ωv, n2
0 = AB/I, 〈·〉 = v〈′〉.

2.2. A complete list of first integrals

From the system (3), (4), the independent second-order system (4) is separated.

Theorem 1. The system (3), (4) has a complete tuple of first integrals; one of them is

an analytic function, and the other is a transcendental function of phase variables expressing

through a finite combination of elementary functions.

It is necessary to make an important remark here. The matter is that from the view-

point of elementary function theory,the obtained first integral is transcendental (i.e., non-

algebraic).In this case, the transcendence is understood in the sense of theory of functions of

one complex variable, when after a formal continuation of a function to the complex domain,

it has essentially singular points corresponding to attracting and repelling limit sets of the

dynamical system considered.

Indeed, by (2), the value of the center-of-masses velocity if a first integral of system (1)

under the condition Fx ≡ 0, precisely the function of phase variables

Ψ0(v, α, Ω) = v2 + σ2Ω2 − 2σΩv sin α = V 2
C (5)

is constant on phase trajectories.

By a nondegenerate change of the independent variable, the system (3), (4) also has an

analytic integral, precisely, the function of phase variables

Ψ1(v, α, ω) = v2(1 + σ2ω2 − 2σω sin α) = V 2
C (6)

is constant on phase trajectories.

Relation (6) allows us to find the dependence of the velocity of a characteristic rigid

body point on other phase variables not solving the system (3), (4); precisely, for VC 6= 0,

the following relation holds: v2 = (V 2
C)/(1 + σ2ω2 − 2σω sin α).



Since the phase space W1 of the system (3), (4) is three-dimensional and there exist

asymptotic limit sets in it,relation (6) defines a unique analytic (even continuous) first inte-

gral of the system (3), (4) on the whole phase space.

Let us examine the problem on the existence of the second (additional) first integral of

the system (3), (4) in more detail. Its phase space is foliated into surfaces {(v, α, ω) ∈ W1 :

VC = const}.
To justify the latter fact, let us introduce the dimensionless differentiation 〈′〉 7→ n0〈′〉

and the additional dimensionless parameter H1 = h1B/In0, n2
0 = AB/I, β = σn0, τ =

sin α, and to the separated second-order system (4), let us put in correspondence the differ-

ential equation

v′ = vΨ(α, ω), (7)




α̇ = −ω + β sin α cos2 α + βω2 sin α− βH1ω cos2 α,

ω̇ = sin α cos α− βω sin2 α cos α + βω3 cos α + βH1ω
2 sin α cos α−H1ω cos α,

(8)

Ψ(α, ω) = −βω2 cos α + β sin2 α cos α− βH1ω sin α cos α.

The analytic first integral (6) obtained above joins Eq. (3) (or (7)). To find the additional

transcendental first integral, to the separated system (8), we put in correspondence the

differential equation

dω

dτ
=

τ − βω[ω2 − τ2] + H1ω[βωτ − 1]

−ω + βτ + βτ [ω2 − τ2]− βH1ω[1− τ2]
.

After introducing the homogeneous change of variables ω = tτ, dω = tdτ + τdt, the inte-

gration of the latter equation reduces to the integration of the following Bernoulli equa-

tion: a1(t)dτ/dt = a2(t)τ + a3(t)τ
3, a1(t) = −(1 + βH1)t

2 + (β + H1)t − 1, a2(t) =

(1+βH1)t−β, a3(t) = β−βH1t−βt2. Applying the classical change of variables p = 1/τ2,

we reduce the equation studied to the linear homogeneous equation

dp

dt
= c1(t)p + c2(t),

where

c1(t) =
2t(1 + βH1)− 2β

(1 + βH1)t2 − (β + H1)t + 1
, c2(t) =

2β − 2βH1t− 2βt2

(1 + βH1)t2 − (β + H1)t + 1
.

The solution p1 of the homogeneous part of the equation studied is represented in the fol-

lowing form (three cases are possible):

1. forD = (β −H1)
2 − 4 > 0,

p1 = k[(1 + βH1)t
2 − (β + H1)t + 1] ·

∣∣∣∣
2(1 + βH1)t− (β −H1)−

√
D

2(1 + βH1)t− (β −H1) +
√

D

∣∣∣∣
H1−β√

D

;



2. for D = (β −H1)
2 − 4 < 0,

p1 = k[(1 + βH1)t
2 − (β + H1)t + 1] · exp

{
arctan

2(1 + βH1)t− (β + H1)√−D

}
;

3. for D = (β −H1)
2 − 4 = 0,

p1 = k
[
(1 + βH1)t

2 − (β + H1)t + 1
] · exp

{
2L1√

1 + βH1 ± 1

}
, L1 =

β√
1 + βH1

± 1.

It is clear that to find a particular solution of the equation studied, applying the

variation-of-constant method, we need to assume that k is a function of t, which is cer-

tainly solvable in the class of elementary functions. In this work, we do not present the

corresponding calculations.

3. Motion in Three-Dimensional Space

3.1. General problem of motion with tracing force

Let us consider the spatial motion of a homogeneous axially-symmetric rigid body of mass

m with forward round endwall in the resistance force field under the quasi-stationarity con-

dition. If (v, α, β) are the spherical coordinates of a certain characteristic point of the rigid

body, {Ωx, Ωy, Ωz} are components of its angular velocity, and I1, I2, and I2 are the principal

moments of inertia in a certain coordinate system related to the body, then the dynamical

part of the equations of motion in the case of Chaplygin functions [1] of medium action has

the form

v̇ cos α− α̇v sin α + Ωyv sin α sin β − Ωzv sin α cos β + σ(Ω2
y + Ω2

z) = Fx,

v̇ sin α cos β + α̇v cos α cos β − β̇v sin α sin β + Ωzv cos α− Ωxv sin α sin β−
−σΩxΩy − σΩ̇z = 0,

v̇ sin α sin β + α̇v cos α sin β + β̇v sin α cos β + Ωxv sin α cos β − Ωyv cos α−
−σΩxΩz + σΩ̇y = 0,

Ω̇x = 0, I2Ω̇y + (I1 − I2)ΩxΩz = −ABv2 sin α cos α sin β − hΩy

v
,

I2Ω̇z + (I2 − I1)ΩxΩy = ABv2 sin α cos α cos β − hΩz

v
,

(9)

where Fx = −Bv2/m cos α, A, B, σ, h > 0. If we consider a more general problem of body

motion in a resisting medium under the existence of a certain tracing force T passing through

the symmetry axis and ensuring the fulfilment of relation (2) during all the motion time,

then in system (9), instead of Fx, we have the quantity (T −B cos α)v2/m; moreover, owing

to condition (2), under certain condition, system (9) reduces to a system of a lower order.



It is seen that the choice of phase variables allows us to consider the six-order system (9)

of dynamical equations as an independent system. Moreover, as is seen from the equations

of motion, the component of the longitudinal angular velocity component is conserved:

Ωx = Ωx0 = const. (10)

In what follows, we restrict ourselves to the body motion without proper rotation, ie.,

to the case where Ωx0 = 0; moreover, for simplicity, let h = 0.

Introduce the following notation: z1 = Ωy cos β+Ωz sin β, z2 = −Ωy sin β+Ωz cos β, zi =

Ziv, i = 1, 2, α̇ = vα′, β̇ = vβ′, v̇ = vv′. Then system (9) in case (2) for Ωx0 = 0 can be

transformed into the following form:

v′ = vΨ(α, Z1, Z2), (11)




α′ = −Z2 + σn2
0 sin α cos2 α + σ(Z2

1 + Z2
2 ) sin α,

Z′2 = n2
0 sin α cos α− Z2Ψ(α, Z1, Z2)− Z2

1
cos α

sin α
,

Z′1 = −Z1Ψ(α, Z1, Z2) + Z1Z2
cos α

sin α
,

(12)

β′ = Z1
cos α

sin α
, (13)

where

Ψ(α, Z1, Z2) = −σ(Z2
1 + Z2

2 ) cos α + σn2
0 sin2 α cos α, n2

0 =
AB

I2
.

3.2. A complete list of first integrals

As above, let us consider the problem of complete integrability (in elementary functions) for

the dynamical system (11)–(13) with analytic right-hand sides.

Since we consider the class of body motions for which property (2) holds, the fifth-order

system (11)–(13) has (along with (10)) an analytic first integral.

Indeed, in the coordinate system considered, we can represent the center-of-masses ve-

locity in the form VC =
{

v cos α, v sin α cos β−σΩz, v sin α sin β+σΩy

}
. Then the following

relation is invariant for system (9) under conditions (10) (Ωx0 = 0) and (2):

v2 − 2σvz2 sin α + σ2(z2
1 + z2

2) = V 2
C0. (14)

Moreover, relation (14) in which the linear and angular velocities compose a homogeneous

form of degree 2 allows us to write the polynomial integral in the above velocities for the

system (11)–(13):

v2(1− 2σZ2 sin α + σ2(Z2
1 + Z2

2 )) = V 2
C0, (15)



and relation (15) allows us to explicitly find the dependence of v on the other quasi-velocities:

v2 =
V 2

C0

1− 2σZ2 sin α + σ2(Z2
1 + Z2

2 )
. (16)

It is seen that relation (16) allows us to consider the problems of integrability in elementary

functions of the system (11)–(13), which is just of lower order, the fourth order.

Let us rewrite the third-order system (12) in the form

α′ = −Z2 + b sin α cos2 α + b(Z2
1 + Z2

2 ) sin α,

Z′2 = sin α cos α + bZ2(Z
2
1 + Z2

2 ) cos α− bZ2 sin2 α cos α− Z2
1
cos α

sin α
,

Z′1 = bZ1(Z
2
1 + Z2

2 ) cos α− bZ1 sin2 α cos α + Z1Z2
cos α

sin α
,

(17)

where b = σn0 and the new dimensionless differentiation 〈′〉 7→ n0〈′〉 is also introduced.

Furthermore, applying the substitution τ = sin α, which is often used, er reduce system

(17)) to the following form with algebraic right-hand sides:

dZ2

dτ
=

τ + bZ2(Z
2
1 + Z2

2 )− bZ2τ
2 − Z2

1/τ

−Z2 + bτ(1− τ2) + bτ(Z2
1 + Z2

2 )
,

dZ1

dτ
=

bZ1(Z
2
1 + Z2

2 )− bZ1τ
2 + Z1Z2/τ

−Z2 + bτ(1− τ2) + bτ(Z2
1 + Z2

2 )
.

(18)

Let us pass to homogeneous coordinates uk, k = 1, 2, by the formulas uk = Zkτ . Then

system (18) reduces to the form

τ
du2

dτ
=

1− bu2 + u2
2 − u2

1

−u2 + bτ2(u2
1 + u2

2) + b(1− τ2)
,

τ
du1

dτ
=

2u1u2 − bu1

−u2 + bτ2(u2
1 + u2

2) + b(1− τ2)
.

(19)

To system (19), we can put in correspondence the following first-order equation:

du2

du1
=

1− bu2 + u2
2 − u2

1

2u1u2 − bu1
. (20)

This equation is integrated in elementary functions, since we integrate the following identity

obtained from Eq. (20):

d

(
1− bu2 + u2

2

u1

)
+ du1 = 0,

and in the coordinates (τ, Z1, Z2), it corresponds to the transcendental first integral of the

following form

Z2
1 + Z2

2 − bZ2τ + τ2

Z1τ
= const. (21)



Using relation (21), we conclude that system (12) has the following transcendental first

integral, which is expressed through a finite combination of elementary functions:

Z2
1 + Z2

2 − bZ2 sin α + sin2 α

Z1 sin α
= const. (22)

Now, using the just found first integral (22), we write the first equation of system (19)

in the form

τ
du2

dτ
=

2− 2bu2 + 2u2
2 − C1U1(C1, u2)

−u2 + b− 2bτ2 + bτ2(C1U1(C1, u2) + bu2)
,

U1(C1, u2) =
C1 ±

√
C2

1 − 4(u2
2 − bu2 + 1)

2
,

(23)

or in the form of the Bernoulli equation

dτ

du2
=

(b− u2)τ + bτ3(C1U1(C1, u2) + bu2 − 2)

2− 2bu2 + 2u2
2 − C1U1(C1, u2)

. (24)

Equation (24) (by using (23)) easily reduces to the linear inhomogeneous equation

dp

du2
=

2(u2 − b)p− 2b(C1U1(C1, u2) + bu2 − 2)

2− 2bu2 + 2u2
2 − C1U1(C1, u2)

, p =
1

τ2
. (25)

The latter fact means that we can find one more transcendental first integral in explicit form

(i.e., through a combination of qyadratures). Moreover, the general solution of Eq. (25)

depends on an arbitrary constant C2; we do not present complete calculations.

To find the last additional integral of the system (11)–(13) (i.e., the integral, which

connects the equation for the angle β) we note that since dβ/dτ = (Z1/τ)/(−Z2 + bτ(Z2
1 +

Z2
2 ) + bτ(1− τ2)), it follows that to the relation

dβ

dτ
=

u1

−u2τ + bτ3(u2
1 + u2

2) + bτ(1− τ2)
(26)

the relation

τ
du1

dτ
=

2u1u2 − bu1

−u2 + bτ2(u2
1 + u2

2) + b(1− τ2)
(27)

taken from system (19) is added.

The obtained system (26), (27) allows us to write the following equation for obtaining

the desired integral:

du1

dβ
= 2u1 − β. (28)

Now, using the first integral of Eq. (20) (C1 is its constant of integration) and Eq. (28), we

can obtain that

du1

dβ
= ±

√
b2 − 4(u2

1 − C1u1 + 1); (29)



hence, by (29), the desired quadrature takes the form

±
∫

du1√
b2 − 4(u2

1 − C1u1 + 1)
= β + C3, C3 = const. (30)

The left-hand side of (30) (without sign) has the form

1

2
arcsin

(
u1 − b

2

)2

√
C2

1 + (b2 − 4)
. (31)

After substitutions, from (31), we obtain the desired invariant relation

cos2[2(β + C3)] =

(
u2 − b

2

)2
u2

1

G1
, (32)

where G1 = [u2
2 − bu2]

2 + 2[u2
2 − bu2][u

2
1 + 1] + [u2

1 + 1]2 + b2u2
1.

In particular, if b = 2, then relation (32) takes the form

cos2[2(β + C3)] =
(Z2 − sin α)Z1

(Z2 − sin α)2 + Z2
1

.

The right hand side, as an odd function of ζ = (Z2 − sin α)/(Z1) has a global maximum for

ζ = 1, which is equal to 1/2.

Therefore, we have proved the following assertion.

Theorem 2. The system (11)–(13) has a complete tuple of first integrals; one of them

is an analytic function, and two other are elementary transcendental functions of their phase

own variables.

In conclusion, we note that for searching for first integrals of the systems considered,

we need to reduce them to the corresponding systems with polynomial right-hand sided;

the form of the latter ones determines the possibility of integrating the initial system in

elementary functions.

4. Motion in Four-Dimensional Space

4.1. Two case of dynamical symmetry of a four-dimensional body

Let a four-dimensional rigid body Θ of mass m with smooth three-dimensional boundary

∂Θ move in a resisting medium that fills a four-dimensional domain of the Euclidean space.

Assume that it is dynamically symmetric; in this case, there exist two logical possibilities

of representation of its tensor of inertia: either in a certain coordinate system Dx1x2x3x4

related to the body, the tensor of inertia has the form

diag{I1, I2, I2, I2}, (33)



or the form

diag{I1, I1, I3, I3}. (34)

In the second case, the two-dimensional planes Dx1x2 and Dx3x4 are planes of body dy-

namical symmetry.

4.2. Physical assumptions and equations on so(4)

Assume that the distance from the point N of application of a non-conservative force S to

a point D is a function of only one parameter, the angle α: DN = R(α) (in the case of

motion in the three-dimensional space, this is the angle of attack. In case (33), this angle

is measured between the velocity vD of the point D and the axis Dx1. In case (34), the

meaning of the angle will be clear from the equations.

The value of the non-conservative (resistance) force S is S = s(α) sgn cos α ·v2, |vD| =
v, where s is a certain function , which is characterized as as scattering or pumping of energy

in the system.

To obtain the explicit form of the dynamical part of the equations of motion,let us

define two functions R and Susing the information about the motion of three-dimensional

bodies as follows (in this case, we also use the known analytical result of S. A. Chaplygin):

R = R(α) = A sin α, S = Sv(α) = Bv2 cos α; A, B > 0.

If Ω is the angular velocity tensor of the four-dimensional rigid body, Ω ∈ so(4), then the

part of the equations of motions,which corresponds to the algebra so(4), has the following

form:

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (35)

where Λ = diag{λ1, λ2, λ3, λ4}, λ1 = (−I1 +I2 +I3 +I4)/2, . . . , λ4 = (I1 +I2 +I3−I4)/2,

M is the exterior force moment acting on the body in R4 and projected on the natural

coordinates in the algebra so(4), and [·, ·] is the commutator in so(4). A skew-symmetric

matrix Ω ∈ so(4) is represented in the form




0 −ω6 ω5 −ω3

ω6 0 −ω4 ω2

−ω5 ω4 0 −ω1

ω3 −ω2 ω1 0




,

where ωi, i = 1, . . . , 6, are components of the angular velocity tensor in projections on the

coordinates in the algebra so(4). In this case, it is obvious that for any i, j = 1, . . . , 4, the

following relations hold: λi − λj = Ij − Ii.



In calculating the exterior force moment, it is necessary to construct the mapping

R4 ×R4 −→ so(4),

which transforms a pair of vectors from R4 into a certain element of the algebra so(4).

4.3. Dynamics in R4

As for the equation of motion of the center of masses C of the four-dimensional rigid body,

then it ie represented in the form

mwC = F, (36)

where, by the many-dimensional Rivals formula,

wC = wD + Ω2DC + EDC, wD = vD + ΩvD, E = Ω̇,

F is the exterior force acting on the body (in our case, F = S), E is the angular acceleration

tensor.

4.4. Generalized problem of body motion under tracing force action

In this work, we consider only the case (33) of distribution of principal moments of inertia.

Let us slightly extend the problem. Assume that along the line Dx1 (in case (33)), a

certain tracing force acts whose line of action passes through the center of masses C. The

introduction of such a force is used for consideration of classes of motions interesting for us;

as a result of which the order of the dynamical system can be reduced.

as in the previous sections, let us consider the class of motion of the four-dimensional

rigid body in the case (2)), i. e., its center of masses moves rectilinear and uniformly.

4.5. Case (33)

By a completely definite choice of the tracing force,the fulfilment of condition (2) can be

achieved.

If (0, x2N , x3N , x4N ) are coordinates — of the point N in the system Dx1x2x3x4 and

{−S, 0, 0, 0} are coordinates of the resistance force vector in the same system, then to find

the force moment, we construct the auxiliary matrix


 0 x2N x3N x4N

−S 0 0 0


 ,

which allows us to obtain the resistance force moment in the projections on the coordinates

in the algebra so(4): {0, 0, x4NS, 0,−x3NS, x2NS} ∈ R6 ∼= M ∈ so(4). Here,it is necessary



to take into account that if (v, α, β1, β2) are the spherical coordinates in R4, then x2N =

R(α) cos β1, x3N = R(α) sin β1 cos β2, x4N = R(α) sin β1 sin β2.

Taking into account all what was said, we can write Eq. (35) in the form

(λ4 + λ3)ω̇1 + (λ3 − λ4)(ω3ω5 + ω2ω4) = 0,

(λ2 + λ4)ω̇2 + (λ2 − λ4)(ω3ω6 − ω1ω4) = 0,

(λ4 + λ1)ω̇3 + (λ4 − λ1)(ω2ω6 + ω1ω5) = x4NS,

(λ3 + λ2)ω̇4 + (λ2 − λ3)(ω5ω6 + ω1ω2) = 0,

(λ1 + λ3)ω̇5 + (λ3 − λ1)(ω4ω6 − ω1ω3) = −x3NS,

(λ1 + λ2)ω̇6 + (λ1 − λ2)(ω4ω5 + ω2ω3) = x2NS.

(37)

Obviously, in the case (33), equations (37) have three cyclic first integrals

ω1 = ω0
1 , ω2 = ω0

2 , ω4 = ω0
4 . (38)

For simplicity, let us consider the motions on zero levels ω0
1 = ω0

2 = ω0
4 = 0. The

remained equations on the algebra so(4) take the following form (here, n2
0 = AB/2I2): ω̇3 =

n2
0v

2 sin α cos α sin β1 sin β2, ω̇5 = −n2
0v

2 sin α cos α sin β1 cos β2, ω̇6 = n2
0v

2 sin α cos α cos β1.

If we introduce the change of angular velocities by the formulas z1 = ω3 cos β2 +

ω5 sin β2, z2 = −ω3 sin β2 cos β1 +ω5 cos β2 cos β1 +ω6 sin β1, z3 = ω3 sin β2 sin β1−ω5 cos β2

sin β1 + ω6 cos β1, then the ”compatible” equations of motion on the tangent bundle TS3 of

the three-dimensional sphere (after taking into account four conditions (2) and (38),which

help us to reduce the order of the general system of dynamical equations of the tenth order

to the sixth order) take the following symmetric form (σ = DC):

v̇ = σ cos α
[
n2

0v
2 sin2 α− (z2

1 + z2
2 + z3

3)
]
, (39)

α̇ = −z3 + σn2
0v sin α cos2 α + σ sin α(z2

1 + z2
2 + z3

3)/v,

ż3 = n2
0v

2 sin α cos α− (z2
1 + z2

2)ctgα,

ż2 = z2z3ctgα + z2
1ctgαctgβ1,

ż1 = z1z3ctgα− z1z2ctgαctgβ1,

β̇1 = z2ctgα,

(40)

β̇2 = −z1ctgα csc β1. (41)

From the complete system of the seventh order (39)–(41), the independent system (40),

(41), of the sixth order is separated,and, in turn, it has an independent subsystem (40) of

the fifth order. To completely integrate this system, we need, in general, six independent



first integrals. However, after changes of variables and introducing a new differentiation

z =
√

z2
1 + z2

2 , z∗ = z2
z1

, z = n0vZ, zk = n0vZk, k = 1, 2, 3, z∗ = Z∗, n0v
′ 7→ ′, the

system (39)–(41) reduces to the following form (b = σn0, [b] = 1):

v′ = vΨ(α, Z, Z3), Ψ(α, Z, Z3) = b cos α[sin2 α− (Z2 + Z2
3 )], (42)





α′ = −Z3 + b sin α cos2 α + b sin α(Z2 + Z2
3 ),

Z′3 = sin α cos α− Z2ctgα− Z3Ψ(α, Z, Z3),

Z′ = ZZ3ctgα− ZΨ(α, Z, Z3),

(43)





Z′∗ = Z
√

1 + Z2∗ctgαctgβ1,

β′1 =
ZZ∗√
1 + Z2∗

ctgα,
(44)

β′2 = − Z1√
1 + Z2∗

ctgα csc β1. (45)

It is seen that the fifth-order system (40) splits into independent subsystems of lower

order: system (43) is of the third order and system (44) (of course, after the change of the

independent variable ) is of the second order. Therefore, for the complete integrability of

the system studied, it suffices to find two independent integrals of the system (43), one for

system (44) and additional integrals ”connecting” Eqs. (42) and (45).

Moreover, we note that system (43) can be considered on the tangent bundle TS2 of the

two-dimensional sphere.

4.6. Complete list of first integrals

The complete system (42)–(45) has an analytic first integral of the form

v2(1− 2bZ3 sin α + (Z2 + Z2
3 )) = V 2

C , (46)

since property (2) holds. The latter invariant relation allows us to find v.

System (43) belongs to the class of systems arising in the three-dimensional rigid body

dynamics and has two independent integrals, which are transcendental functions of their

phase variables (in the sense of definitions of complex analysis) and are expressed through a

finite combination of elementary functions:

Z2 + Z2
3 − bZ3 sin α + sin2 α

Z sin α
= C1 = const, (47)

G(Z, Z3, sin α) = C2 = const. (48)

System (44) has a first integral of the form
√

1 + Z2∗
sin β1

= C3 = const (49)



and, in turn, it has an additional first integral, which allows us to find β2; it has the form

± cos β1√
C2

3 − 1
= sin{C3(β2 + C4)}, C4 = const. (50)

Also, it is necessary to note the fact that the denominators of the presented systems

contain the functions sin α and sin β1, which reflect only the information about the fact

that the coordinates (v, α, β1, β2) are spherical, and for sin α = 0 and sin β1 = 0 they

(kinematically) degenerate.

Theorem 3. The dynamical system (42)–(45) has a complete list of first integrals (46)–

(50); one of them is an analytic function, and the other are transcendental functions of their

variables (after their formal continuation to the complex domain).

4.7. Conclusion

This work complements the previous studies and also opens a new series of works, since pre-

viously, only those motions of a four-dimensional body were considered in which the exterior

force moment is identically equal to zero (M ≡ 0) or the exterior force field is potential;

unfortunately, we cannot mention all the authors). In the present work, we continue the

direction developed by the author in studying the equations of motion of rigid body on

so(4)×R4 under the presence of a non-conservative exterior force moment.

The results listed above and also studies of related fields were already reported at the

workshop ”Actual Problems of Geometry and Mechanics” named after professor V. V. Trofi-

mov led by D. V. Georgievskii and M. V. Shamolin at Department of Mechanics and Math-

ematics of M. V. Lomonosov Moscow State University.
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