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Abstract
The results of this work appeared in the process of

studying a certain problem on the rigid body motion
in a medium with resistance [Chaplygin, 1933], [Chap-
lygin, 1976], [Shamolin-1, 2007], [Shamolin-2, 2007],
where we needed to deal with first integrals having non-
standard properties. Precisely, they are not analytic, not
smooth, and on certain sets, they can be even discon-
tinuous. Moreover, they are expressed through a finite
combination of elementary functions. However, the lat-
ter circumstances allowed us to carry out a complete
analysis of all phase trajectories and show those their
properties which have a ”roughness” and are preserved
for systems of a more general form having certain sym-
metries of latent type. Therefore, it is interesting to
study sufficiently wide classes of dynamical systems
that have analogous properties and moreover, coming
from the dynamics of a rigid body interacting with a
medium.
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1 Introduction
The results in”coding” countably many topologically

non-equivalent phase portraits were already obtained
previously for systems of various types (see, e.g.,
[Shamolin-1, 2007]). The material of this section in
the presented form was not published previously, and
the authors decided to present it. The invariant in-
dices introduced in this case were again apperaed from
concrete problems of dynamics (see also [Shamolin-1,
2007]).
As is known, the problem of the rigid body motion in

an infinite medium volume, owing to its difficulty, re-
quires a whole number of simplifying assumptions and,
moreover, the main point is the introduction of those as-
sumptions which allows us to study the rigid body mo-
tion independently of the motion of a medium in which

the body is placed. Such actions were incorporated in
the classical Kirchhoff problem, but it does not exhaust
the possibilities of modeling of such a type.
This work is the study of the problem of the plane-

parallel motion of a symmetric rigid body that interacts
with the medium only through a plane part (cavitator)
of its exterior surface. In constructing the force field,
we use the information about the properties of stream-
line flow around under quasi-stationarity conditions,
and the medium motion is not studied in this case. In
contrast to the previous works (see [Shamolin-1, 2007],
[Shamolin-2, 2007]) where the dependence of the force
moment on the body angular velocity is neglected, in
this work, in accordance with experiment, we take into
account the effects of influence of the rotational deriva-
tives of hydro-aero-dynamical forces in components of
the body angular velocity [Shamolin-1, 2007].
From the practical viewpoint, it is important the prob-

lem od studying the stability of the rectilinear progres-
sive motion under which the velocities of body points
are perpendicular to the cavitator (the angle of attack is
identically equal to zero in this case).
The necessity of a complete nonlinear study is justi-

fied by the importance of finding those conditions un-
der which there exist oscillations of bounded amplitude
near the rectilinear progressive motion, which is unsta-
ble with respect to the angle of attack and the angular
velocity.

2 Dynamical part of the equations of motion
Let us consider the plane-parallel motion of a sym-

metric homogeneous rigid body of massm with front
plane end-wall (plate) in a resisting medium (see also
[Shamolin-1, 2007]). In the case where there are no
tangent forces, the medium action on the body reduces
to a forceS (applied to a certain pointN ) orthogonal
to the plate.
In the dynamical model, we naturally introduce the

following three phase coordinates:v = |v| is the value



of the plate centerD with respect to the medium,α
is the angle of attack,Ω is the algebraic value of the
projection of the angular velocity on the axis orthogo-
nal to the motion. The value of the forceS quadrat-
ically depends onv, S = s1v

2, with certain coef-
ficient s1 (Newton’s resistance). The medium action
on the body is determined by the following two sign-
alternating functions of the phase variables:yN = DN
ands1 = s sgn cos α.
We assume thats is a function ofα, and yN is a

function of the pair of dimensionless variables(α, ω),
ω = Ω∆/v, where∆ is the characteristic size.
The phase state of the system is determined by six

functions, three of these functions,v, α, ω ”— are
considered as quasi-velocities of the system, and the
other three functions (kinematic variable) are cyclic,
which leads to reducing the order of the general sys-
tem of equations of motion. Also, it includes functions
yN (α, ω) ands(α) determining the medium action on
the body. As was already mentioned, the functionyN

depends on the angle of attack and on the reduced angu-
lar velocityω. If the latter dependence can be neglected
as was in a number of the previous works), thenyN is
a function of only the angle of attack:yN = y(α),
and its dependence on a single argument is found by
using the experimental information about the proper-
ties of streamline flow around. Then, in what follows,
the method of ”embedding” the problem in the general
class of problems is applied.
Our primary goal is the account of the influence of

rotational derivatives of medium force action moment
in the body angular velocity, which requires the intro-
duction of an additional argument in the medium action
functions, which itself is a nontrivial problem of mod-
elling. In this work, we restrict ourselves to only the
introduction of the angular velocity as an argument to
the functionyN , and neglect asimilar introduction to
the reduced resistance coefficients.
In what follows, we consideryN in the form

yN (α, ω) = yN (α, Ω∆/v) = y(α) − HΩ/v; in this
case,H > 0 according to the experimental results.
Then the equation for the kinetic moment variation is
written as

IΩ̇ = F (α)v2 −Hs(α)Ωv, F (α) = y(α)s(α);

moreover, changing the differentiation, we can reduce
the dynamical part of equations to the form

v′ = vΨ(α, ω), (1)

α′ = ω + σω2 sin α +
σ

I
F (α) cos α+

+
s(α)
m

sin α +
σ

I
hωs(α) cos α, (2)

ω′ = −1
I
F (α) + σω3 cos α− σ

I
ωF (α) sin α+

+ω
s(α)
m

cosα− B

I
hω cos α− σ

I
hω2s(α) sin α, (3)

where Ψ(α, ω) = −σω2 cos α + σF (α) sin α/I −
s(α) cos α/m + σhωs(α) sin α/I.
The latter two equations (2), (3) of the system (1)–(3)

compose an independent second-order system on the
phase cylinderS1{α mod 2π} ×R1{ω}.

3 ”Embedding” the problem in a wider class of
problems

The system (1)–(3) contains the functionsF (α) and
s(α) whose explicit form is sufficiently difficult to an-
alytically describe, even for plates of simple form. For
this reason,we use the method for ”embedding” this
problem in a wider class of problems, which takes into
account only the qualitative properties of the functions
F (α) ands(α).
The support result for us is the result of S. A. Chap-

lygin who has obtained the functionsy(α) ands(α) in
the following analytical form for the parallel stream-
line flow around a plate of infinite length [Chaplygin,
1933]:

y(α) = y0(α) = A sin α, A > 0, (4)

s(α) = s0(α) = B cos α, B > 0. (5)

This result help us to construct functional classes{y},
{s}, and then{F}. Combining (4), (5) with the exper-
imental information about the properties of the stream-
line flow around, we describe the necessary classes
consisting of sufficiently smooth,2π-periodic func-
tions (y(α) is odd, ands(α) is even) that satisfy the
following conditions:

y(α) > 0, α ∈ (0, π), y′(0) > 0, y′(π) < 0

(function class{y}),

s(α) > 0, α ∈
(
0,

π

2

)
,

s(α) < 0, α ∈
(π

2
, π

)
, s(0) > 0, s′(0) < 0

(function class{s}). y, as well ass change the sign
under the replacement ofα with α + π. Therefore, we
have found how the embeddingy ∈ {y} = Y, s ∈
{s} = Σ is fulfilled. From the above properties, it



follows thatF is a sufficiently smooth oddπ-periodic
function that satisfies the conditions

F (α) > 0, α ∈
(
0,

π

2

)
, F ′(0) > 0, F ′

(π

2

)
< 0

(function class{F}). Therefore, we have found how
the embeddingF ∈ {F} = Φ.
is fulfilled. In particular, the analytic function

F (α) = F0(α) = AB sin α cosα ∈ Φ (6)

is a typical representative of the function classΦ
(see [Chaplygin, 1933]).
In connection with the instability of the rectilinear

progressive braking, it is natural to pose the follow-
ing question: do there exist the angular oscillations of
the body symmetry axis of a finite (bounded) ampli-
tude? Let us formulate this question in a more general
form: does there exist a pair of functionsy and s of
medium action such that for a certain solution of the dy-
namical part of the equations of motion, the constraint
0 < α(t) < α∗ < π/2 holds starting from a certain
instant of timet = t1?
Under the simplest assumption on the functionsyN

and s of the medium action on the body, it was pre-
viously shown [Shamolin-1, 2007] that for the quasi-
stationary description of the interaction of the medium
with the symmetric body (whenyN ands depend only
on the angle of attack (H = 0)), for any admissible
pair of functionsy(α) ands(α) of the medium action,
in the whole range (0 < α < π/2)of finite angles of
attack, the system has no any oscillatory solutions of
finite(bounded) amplitude.
Therefore, for a possible positive answer to the ques-

tion posed above , we need to ”use” the dependence of
the medium action force moment on the reduced an-
gular velocity. as will be shown below, under certain
assumptions,in principle, we can expect a positive an-
swer to this question.
Of course, from the practical viewpoint the analysis

of dynamical equations is important only in a neigh-
borhood of the rectilinear progressive motion, since for
certain angles of attack, there occur a washing away
of the lateral surface, and this model of medium ac-
tion on the body is no longer true. But, first, for bodies
with lateral surface of different form, the values of crit-
ical angles of attack are different and unknown in gen-
eral. Therefore, we need to study the whole range of
angles. Second, the initial system (1)–(3) is a mechan-
ical pendulum-like system having interesting nonlinear
properties, which forces us to perform a complete non-
linear analysis.
Therefore, to study the plane-parallel flow around a

plate by a medium, we use the classes of dynamical
systems defined by the pair of medium action func-
tions, which considerably complicate the performance
of the qualitative analysis.

4 Multiparameter family of system phase por-
traits on the two-dimensional cylinder

The dynamical system (2), (3) on the two-dimensional
phase cylinder has the following equilibrium states:

(0, 0), (π, 0), (7)
(π

2
, 0

)
,

(
3π

2
, 0

)
, (8)

(
π

2
,
1
σ

)
,

(−π

2
,
−1
σ

)
. (9)

it is necessary to note that the equilibrium states (8) are
saddles for any admissible parameters of the problem,
and the equilibrium states (9) are attracting.
For a system of the form (1)–(3), it is convenient to in-

troduce the following three-dimensionless parameters:

µ1 = 2
B

mn0
, µ2 = σn0, µ3 =

Bh

In0
, (10)

n2
0 =

AB

I
, B = s(0), AB = F ′(0).

Let us introduce the notation for bands on the phase
cylinder

Π =
{

(α, ω) ∈ R2 : − π

2
< α <

π

2

}
,

Π′ =
{

(α, ω) ∈ R2 :
π

2
< α <

3π

2

}
.

Theorem 1. In the infinite-dimensional parameter
space of system (2), (3) there exists a domainJ of pos-
itive measure which corresponds to the following be-
havior of trajectories of this system:
1) system (2), (3) has no other equilibrium states ex-

cept for (7)–(9);
2) in the bandΠ′, system (2), (3) has no closed phase

characteristics;
3) in the bandΠ, near the equilibrium state(0, 0), un-

der the variation of parameters (10), there can be a bi-
furcation of birth of a unique stable limit cycle from a
weak focus
Let us consider the following subdomain of the do-

mainJ:

J1 = {(µ1, µ2, µ3) ∈ R3 : 0 < µ3 − µ2 < 2}.

In this work, we consider only the following infinite
parameter domain of system (2), (3):

J ∩ J1. (11)



Remark 1.
The following behavior of phase trajectories near the

equilibrium states (7) corresponds to the parameter do-
main (11):
1) the equilibrium state(π, 0) is repelling;
2) the equilibrium state(0, 0) is repelling if µ1 >

µ3 − µ2 and attracting ifµ1 ≤ µ3 − µ2; moreover,
if µ1 = µ3−µ2, then the equilibrium states are a weak
attracting focus.
Closed curves consisting of phase trajectories of sys-

tem (2), (3) for the parameter domain (11) can exist
only in the bandΠ [Shamolin-1, 2007].
The main problem of the portrait classification is the

problem on the behavior of stable and unstable separa-
trices of the existing hyperbolic saddles.
let us consider the key problems, the problems on the

global behavior of the following separatrices:
a) the separatrix emanating from the point(π/2, 0) to

the bandΠ′;
b) the separatrix entering the point(−π/2, 0) from the

bandΠ;
c) the separatrix emanating from the point(π/2, 0) to

the bandΠ.
By the independence of behavior of these separatrices

we mean the situation where they have limit sets inde-
pendently chosen from the domain of definition of all
their logically possible limit sets with account of the
character of location of all isoclines of the system and
existing equilibrium states.
Theorem 2.The global behavior of any two separatri-

ces a)–c) is independent, i.e., the behavior of the third
separatrix is defined through the behavior of two other
separatrices.
As the pair of key separatrices whose behavior is in-

dependent, let us choose the sepsrstrices a) and b).
Definition 1. The indexk1 of the separatrix ) is the

rational number from the set

{
r ∈ Q : r =

1
4

+ m, r =
1
2

+ m, m ∈ N0

}
.

We say thatk1 = r, if the separatrix a) has the point
(2πr, 1/σ) if r = 1/4+m and the point(2πr−0, +∞)
if r = 1/2 + m as itsω-limit set.
Definition 2. The indexk2 of the separatrix b) is the

natural numberj from the set

{j ∈ N : j = 1, 2, 3, 4, 5}.

We say thatk2 = j if as theα-limit set, the separatrix
b) has the point(0, 0) or the stable limit cycle (j = 1);
the point(π/2, 0) (j = 2); the point(π, 0) (j = 3); the
point (−0,−∞) (j = 4); the point(−π, 0) (j = 5).
Therefore, it is seen that the global behavior of the

separatrix c) indeed depends on the indicesk1 andk2,
i.e., on the behavior of the separatrices a) and b) in
each concrete case.

Figure 1. (k1, k2) = (1/4, 2)∗

Figure 2. (k1, k2) = (1/4, 4)∗

Remark 2. If we fix the indexk1, then in some cases,
the indexk2 can be chosen from a narrower set de-
scribed in Definition 2.
Theorem 3. For anyk = (k1, k2) from the (possibly

truncated) domain of definition, the corresponding
global behavior of the separatrices a) and b) is admis-
sible.
Therefore, Definitions 1 and 2 are correct, and we con-

struct an infinite family of phase portraits containing
portraits with limit cycles; moreover all these portraits
have different qualitative properties.
Theorem 3 allows us to make the following conclu-

sion: any sufficiently small perturbation yielding the
desired system in the parameter domain considered de-
scribed the physical pendulum of the plane infinitely
many times reconstructs the global type of the Hamil-
tonian phase portrait of the physical pendulum.
Some of the portraits (the indexk assumes the val-

ues(1/4, 2)∗, (1/4, 4)∗, (1/4, 5), (1/2, 3)∗, (1/4, 5)∗,
(1/4, 3)∗, (1/4, 3), (1/4, 4)) are shown in Figs 1–8.
Here, the star labels the phase portraits having simple
or complicated limit cycles in the bandΠ.
For a system of the particular form (2), (3), under

conditions (4), (5) (or (6)), we therefore have a certain
three-parametric family of phase portraits.
Note that many assertions of this section hold in wider

parameter domains.

5 Conclusion
The two-parameter family constructed in [Shamolin-

1, 2007] doe not contain limit cycles, in contrast to
the just constructed family. But these two families are



Figure 3. (k1, k2) = (1/4, 5)

Figure 4. (k1, k2) = (1/2, 3)∗

Figure 5. (k1, k2) = (1/4, 5)∗

Figure 6. (k1, k2) = (1/4, 3)∗

united by the fact that to every values of dimensionless
parameters of the problem, we put in correspondence
a pair of independent indices (k1 and k2 in this case)
”coding” the topological type of the phase portrait.

Figure 7. (k1, k2) = (1/4, 3)

Figure 8. (k1, k2) = (1/4, 4)
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