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Integrability and nonintegrability in terms of transcendental functions in

dynamics of a rigid body
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The results of the presented work are due to the study of the applied problem of the rigid body motion in a resisting medium.

More earlier the complete lists of transcendental first integrals expressed through a finite combination of elementary functions

were obtained. This circumstance allowed the author to perform a complete analysis of all phase trajectories and highlight

those properties of them which exhibit the roughness and preserve for systems of a more general form.
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1 Introduction

The complete integrability of those systems is related to symmetries of a latent type. Therefore, it is of interest to study

sufficiently wide classes of dynamical systems having analogous latent symmetries.

As is known, the concept of integrability is sufficiently broad and undeterminate in general. In its construction, it is

necessary to take into account in what sense it is understood (it is meant that a certain criterion according to which one makes

a conclusion that the structure of trajectories of the dynamical system considered is especially attractive), in which function

classes the first integrals are sought for, etc.

In this work, the author applies such an approach such that as first integrals, transcendental functions are elementary. Here,

the transcendence is not understood in the sense of elementary functions (e.g., trigonometrical functions) but in the sense

that they have essentially singular points (by the classification accepted in the theory of functions of one complex variable

according to which a function has essentially singular points). In this case, it is necessary to continue them formally to the

complex plane. As a rule, such systems are strongly nonconservative.

2 General characteristic of variable dissipation dynamical systems

Generally speaking, the dynamics of a rigid body interacting with a medium is just a field, where there arise either dissipative

systems or systems with the so-called antidissipation (energy supporting inside the system itself). Therefore, it becomes urgent

to construct a methodology precisely for those classes of systems which arise in modeling body motion the contact surface of

which is a plane part, the simplest part of their exterior surface.

After certain simplifications, we can reduce the system of equations for the plane-parallel motion to the second-order

pendulum systems in which there is a linear dissipative force with variable coefficient whose sign alternates for different

values of the periodic phase variable in the system.

Below, we highlight the classes of essentially nonlinear systems of the second and third orders integrable in transcendental

(in the sense of theory of functions of one complex variable) elementary functions. For example such systems are five-

parametric dynamical systems including the majority of systems that are previously studied in the dynamics of a rigid body

interacting with a medium [1, 2, 3]:

α̇ = a sin α + bω + γ1 sin5 α + γ2ω sin4 α + γ3ω
2 sin3 α + γ4ω

3 sin2 α + γ5ω
4 sin α,

ω̇ = c sin α cos α + dω cos α + γ1ω sin4 α cos α + γ2ω
2 sin3 α cos α +

+ γ3ω
3 sin2 α cos α + γ4ω

4 sin α cos α + γ5ω
5 cos α.

Let us consider a smooth autonomous system of the (n + 1)th order and normal form defined on the cylinder Rn{x} ×
S1{α mod 2π}, where α is a periodic coordinate of period T > 0. Denote by div(x, α) the divergence of the right-hand side

(which is a function of all phase variables in general and is not identically equal to zero) of this system. Such a system is

called a system with zero (nonzero) mean variable dissipation if the function
∫

T

0
div(x, α) dα is (is not) identically equal to

zero. Moreover, in some cases (for example, when at certain points of the circle S1{α mod 2π}, there arise singularities), this

integral is understood in the principal value sense.

It should be noted that it is sufficiently difficult to give the general definition of a system with zero (nonzero) mean variable

dissipation. The definition just presented uses the concept of divergence (as is known, the divergence of the right-hand side of

a normal form system characterizes the variation of the phase volume in the phase space of the system).

∗ Corresponding author: e-mail: shamolin@imec.msu.ru, Phone: +7 495 939 5143, Fax: +7 495 939 0165

c© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim



64 Section 1: Multi-body Dynamics

3 Systems on tangent bundle of two-dimensional sphere

Let us study a system of the following form

α̇ = −z2 + β(z2

1
+ z2

2
) sin α + β sin α cos2 α,

ż2 = sin α cos α + βz2(z
2

1
+ z2

2
) cosα − βz2 sin2 α cos α − z2

1

cos α

sin α
,

ż1 = βz1(z
2

1
+ z2

2
) cosα − βz1 sin2 α cos α + z1z2

cos α

sin α
,

which also arises in the spatial dynamics of a rigid body interacting with a medium [1, 2, 3] and corresponds to the system

with algebraic right-hand side.

In a similar way, we pass to the homogeneous coordinates uk, k = 1, 2, according to the formulas zk = ukτ .

Our system reduces to some system which, in turn, corresponds to some equation which is integrated in elementary func-

tions since the identity d
(

(1 − βu2 + u2
2
)/(u1)

)

+du1 = 0, is integrated and has the following first integral in the coordinates

(τ, z1, z2): (z2
1

+ z2
2
− βz2τ + τ2)/(z1τ ) = const.

Let us pose the following question: which is possibility of integrating the system

dz

dx
=

ax + by + cz + c1z
2/x + c2zy/x + c3y

2/x

dx + ey + fz
,

dy

dx
=

gx + hy + iz + i1z
2/x + i2zy/x + i3y

2/x

dx + ey + fz

of a more general form in elementary functions and three-dimensional phase domains, which includes above systems and has

a singularity of à form 1/x?

As before, introducing the substitutions y = ux and z = vx, we obtain that our system reduces to some system, we put in

correspondence the equation with algebraic right-hand side. The integration of the latter equations reduces to the integration

of the following equation in total differentials. In general, we have the 15-parameter family of equations of the above form.

To integrate the latter identity as a homogeneous equation in elementary functions, it suffices to impose seven relations

g = 0, i3 = e, i1 = 0, i = 0, c2 = e, c = h, 2c1 = i2 + f. (1)

Introduce eight parameters β1, . . . , β8 : g = 0, h = β1, i1 = 0, i = 0, i2 = β2, i3 = β3, d = β4, e = β3, f = β5, a =
β6, b = β7, c = β1, c1 = (β2 + β5)/2, c2 = β3, c3 = β8 and consider them as independent parameters.

Therefore, under the group of conditions (1), our equation reduces to some form, after that, the equation under study is

integrated in elementary functions.

Indeed, integrating our identity, we obtain some relation which allows us to obtain the first integral in the form in the

coordinates (x, y, z):
(β2 − β5)z

2/2 − β8y
2 + (β1 − β4)zx + β6x

2

yx
− β7 ln

∣

∣

∣

y

x

∣

∣

∣
= const.

Therefore, we can make a conclusion on the integrability in elementary functions of the following, in general, nonconservative

third-order system depending on eight parameters:

dz

dx
=

β6x + β7y + β1z + (β2 − β5)z
2/2x + β3zy/x + β8y

2/x

β4x + β3y + β5z
,

dy

dx
=

β1y + β2zy/x + β3y
2/x

β4x + β3y + β5z
.

On the set S1{α mod 2π} \ {α = 0, α = π} × R2{z1, z2}, the third-order system

α̇ = β4 sin α + β3z1 + β5z2,

ż2 = β6 sin α cos α + β7z1 cos α + β1z2 cos α +
β2 + β5

2
z2

2

cos α

sin α
+ β3z1z2

cos α

sin α
+ β8z

2

1

cos α

sin α
,

ż1 = β1z1 cos α + β2z1z2

cos α

sin α
+ β3z

2

1

cos α

sin α

(2)

depending on eight parameters has a (transcendental in general) first integral expressed through elementary functions.

In particular, for β1 = β3 = β7 = 0, β2 = β6 = 1, β5 = β8 = −1, and β4 = β, the system (2) reduces to above system.
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